A132101 a(n) = (A001147(n) + A047974(n))/2.
1, 1, 3, 11, 65, 513, 5363, 68219, 1016481, 17243105, 327431363, 6874989963, 158118876449, 3952936627361, 106729080101235, 3095142009014843, 95949394016339393, 3166329948046914369, 110821547820208233731, 4100397266856761733515
Offset: 0
Examples
a(2)=3 counts the arrangements [1122], [1212] and [1221]. - _R. J. Mathar_, Oct 18 2019
Links
- G. C. Greubel, Table of n, a(n) for n = 0..400
- Jonathan Burns, Assembly Graph Words - Single Transverse Component (Counts).
- Jonathan Burns, Egor Dolzhenko, Natasa Jonoska, Tilahun Muche, and Masahico Saito, Four-Regular Graphs with Rigid Vertices Associated to DNA Recombination, Discrete Applied Mathematics, Volume 161, Issues 10-11, July 2013, Pages 1378-1394.
- R. J. Mathar, Feynman diagrams of the QED vacuum polarization, vixra:1901.0148 (2019), Section IV.
Crossrefs
Programs
-
Magma
R
:=PowerSeriesRing(Rationals(), 30); Coefficients(R!(Laplace( (Exp(x+x^2) + 1/Sqrt(1-2*x))/2 ))); // G. C. Greubel, Jul 12 2024 -
Maple
A132101 := proc(n) (A001147(n)+A047974(n))/2 ; end proc: seq(A132101(n),n=0..30) ; # R. J. Mathar, Dec 20 2020
-
Mathematica
Table[((2n-1)!!+I^(-n)*HermiteH[n,I/2])/2,{n,0,30}] (* Jonathan Burns, Apr 05 2016 *)
-
SageMath
[(factorial(n)*binomial(2*n,n) + (-2*i)^n*hermite(n,i/2))/2^(n+1) for n in range(31)] # G. C. Greubel, Jul 12 2024
Formula
D-finite with recurrence -(n-3)*a(n) +2*(n^2-3*n+1)*a(n-1) -(n-1)*a(n-2) -2*(2*n-5)*(n-1)*(n-2)*a(n-3) = 0. - R. J. Mathar, Dec 20 2020
E.g.f.: (1/2)*( exp(x+x^2) + 1/sqrt(1-2*x) ). - G. C. Greubel, Jul 12 2024
Extensions
Entry revised by N. J. A. Sloane, Nov 04 2011
Comments