A132126 Number of nonassociative subloops of order 8n of the Cayley octonions (up to isomorphism).
0, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
- P. Boddington and D. Rumynin, On Curtis' theorem about finite octonionic loops, Proc. Amer. Math. Soc. 135 (2007), 1651-1657.
Crossrefs
Cf. A090750.
Programs
-
Mathematica
ReplacePart[PadRight[{0},120,1],{6->2,12->2,30->3}] (* Harvey P. Dale, Dec 18 2018 *)
-
PARI
A132126(n) = if(1==n,0,if((6==n)||(12==n),2,if(30==n,3,1))); \\ Antti Karttunen, Sep 27 2018
Formula
a(1) = 0, a(6) = 2, a(12) = 2, a(30) = 3, otherwise a(n) = 1.
Comments