A132145 Numbers that can be presented as a sum of a prime number and a Fibonacci number (0 is considered to be a Fibonacci number).
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72
Offset: 1
Keywords
Examples
11 = 3+8, the sum of a prime number (3) and a Fibonacci number (8).
Links
- T. D. Noe, Table of n, a(n) for n=1..1000
- K. S. Enoch Lee, On the sum of a prime and a Fibonacci number, arXiv:1011.0173 [math.NT], 2010.
Programs
-
Maple
N:= 1000: # for all entries <= N Primes:= select(isprime,{$1..N}): phi:= (1+sqrt(5))/2: Fibs:= {seq(combinat:-fibonacci(i),i=0..floor(log[phi]((N+1)*sqrt(5))))}: sort(convert(select(`<=`,{seq(seq(f+p,f=Fibs),p=Primes)},N),list)); # Robert Israel, Aug 03 2015
-
Mathematica
Take[Union[Flatten[Table[Fibonacci[n] + Prime[k], {n, 70}, {k, 70}]], Table[Prime[k], {k, 70}]], 70]
Comments