cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A132148 Triangular array T(n,k) = C(n,k)*Lucas(n-k), 0 <= k <= n.

Original entry on oeis.org

2, 1, 2, 3, 2, 2, 4, 9, 3, 2, 7, 16, 18, 4, 2, 11, 35, 40, 30, 5, 2, 18, 66, 105, 80, 45, 6, 2, 29, 126, 231, 245, 140, 63, 7, 2, 47, 232, 504, 616, 490, 224, 84, 8, 2, 76, 423, 1044, 1512, 1386, 882, 336, 108, 9, 2, 123, 760, 2115, 3480, 3780, 2772, 1470, 480, 135, 10, 2
Offset: 0

Views

Author

Peter Bala, Aug 17 2007

Keywords

Examples

			Triangle starts
   2;
   1,   2;
   3,   2,    2;
   4,   9,    3,   2;
   7,  16,   18,   4,   2;
  11,  35,   40,  30,   5,  2;
  18,  66,  105,  80,  45,  6,  2;
  ...
		

Crossrefs

Cf. A000032 (T(n,0)), A000045, A005248 (row sums), A061084 (alter. row sums), A094440.

Programs

  • Maple
    with(combinat): lucas := n -> fibonacci(n-1) + fibonacci(n+1): T := (n,k) -> binomial(n,k)*lucas(n-k): for n from 0 to 10 do seq( T(n,k), k = 0..n) od;
  • Mathematica
    Flatten[Table[Binomial[n,k]LucasL[n-k],{n,0,10},{k,0,n}]] (* Harvey P. Dale, Nov 06 2011 *)

Formula

G.f.: (2 - (2x + 1)*t)/(1 - (2x + 1)*t + (x^2 + x - 1)*t^2) = 2 + (1 + 2*x)*t + (3 + 2*x + 2*x^2)*t^2 + (4 + 9*x + 3*x^2 + 2*x^3)*t^3 + ... .
The row polynomials L(n,x) = Sum_{k = 0..n} C(n,k)*Lucas(n-k)*x^k satisfy L(n,x)*F(n,x) = F(2*n,x), where F(n,x) = Sum_{k = 0..n} C(n,k)*Fibonacci(n-k)*x^k.
Other identities and formulas include:
L(n+1,x)^2 - L(n,x)*L(n+2,x) = -5*(x^2 + x - 1)^n;
L(n+1,x) - (x^2 + x - 1)*L(n-1,x) = 5*F(n,x) for n >= 1;
L(2*n,x) - 2*(x^2 + x - 1)^n = 5*F(n,x)^2;
L(n,2*x) = Sum_{ k = 0..n} C(n,k)*L(n-k,x)*x^k;
L(n,3*x) = Sum_{ k = 0..n} C(n,k)*L(n-k,2*x)*x^k etc.
Sum_{k = 0..n} C(n,k)*L(k,x)*F(n-k,x) = 2^n*F(n,x).
Row sums: L(n,1) = Lucas(2*n); Alternating row sums: L(n,-1) = (-1)^n*Lucas(n); L(n,1/phi) = (-1)^n*L(n,-phi) = sqrt(5)^n for n >= 1, where phi = (1 + sqrt(5))/2.
The polynomials L(n,-x) satisfy a Riemann hypothesis: the zeros of L(n,-x) lie on the vertical line Re x = 1/2 in the complex plane.
From Peter Bala, Jun 29 2016: (Start)
L(n,x) = (x + phi)^n + (x - 1/phi)^n, where phi = (1 + sqrt(5))/2. The zeros of L(n,x) are given by -1/2 - i*sqrt(5)/2*cot( (2*k - 1)*Pi/(2*n) ) for k = 1..n.
d/dx(L(n,x)) = n*L(n-1,x).
L(-n,x) = L(n,x)/(x^2 + x - 1)^n.
L(n,x - 1) = (-1)^n*L(n,-x).
L(n,x)^2 - L(2*n,x) = 2*(x^2 + x - 1)^n.
L(n,x)^3 - L(3*n,x) = 3*(x^2 + x - 1)^n*L(n,x).
L(n,x)^4 - L(4*n,x) = 4*(x^2 + x - 1)^n*L(n,x)^2 - 2*(x^2 + x - 1)^(2*n).
If n divides m and m/n is odd then L(n,x) divides L(m,x) in the polynomial ring Z[x].
L(n,x) = F(n+1,x) - (x^2 + x - 1)*F(n-1,x) = 2*F(n+1,x) - (2*x + 1)*F(n,x), where F(n,x) = Sum_{k = 0..n} binomial(n,k)*Fibonacci(n-k)*x^k denotes the n-th row polynomial of A094440 (taken with an offset of 0).
exp( Sum_{n >= 1} L(n,x)*z^n/n ) = Sum_{n >= 0} F(n+1,x)*z^n.
exp( Sum_{n >= 1} L(n,x)*L(2*n,x)*z^n/n ) = 1/( F(1,x)*F(2*x)*F(3,x) ) * Sum_{n >= 0} F(n+1,x)*F(n+2,x)* F(n+3,x)*z^n. (End)
From Peter Bala, Dec 31 2023: (Start)
For n >= 1, the n-th row polynomial L(n,x) is the numerator of 1/(n-1)! * (d/dx)^(n-1) (2*x + 1)/(1 - x - x^2).
Recurrence: for n >= 1, n*L(n+1,x) = n*(2*x + 1)*L(n,x) + (1 - x - x^2)* d/dx(L(n,x)) with L(1,x) = 2*x + 1. (End)