A132152 a(4n+k) = 4a(4n+k-1)-6a(4n+k-2)+4a(4n+k-3), for k = 0,1,2; 2*a(4n+3) = 7a(4n+2)-8(4n+1)+2a(4n), with a(0) = a(1) = a(2) = 0, a(3) = 1.
0, 0, 0, 1, 4, 10, 20, 34, 56, 100, 200, 356, 624, 1160, 2320, 4104, 7136, 13200, 26400, 46736, 81344, 150560, 301120, 533024, 927616, 1716800, 3433600, 6078016, 10577664, 19576960, 39153920, 69308544, 120618496, 223238400
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 10, 0, 0, 0, 16).
Crossrefs
Cf. A000749 (0, 0, 0, 1, 4, 10, 20, 36) for which a(n)=4a(n-1)-6a(n-2)+4a(n-3).
Programs
-
Mathematica
Join[{0},LinearRecurrence[{0,0,0,10,0,0,0,16},{0,0,1,4,10,20,34,56},40]] (* Harvey P. Dale, Nov 03 2013 *)
Formula
Sequence is identical to its fourth differences in absolute value.
a(n)=10*a(n-4)+16*a(n-8), n>8. - R. J. Mathar, Feb 07 2009
G.f.: -x^3*(2*x+1)*(4*x^2+1)*(2*x^2+2*x+1)/(-1+10*x^4+16*x^8) . - R. J. Mathar, Apr 19 2023
Extensions
Definition corrected and the sequence extended by R. J. Mathar, Feb 07 2009
Comments