A063882 a(n) = a(n - a(n - 1)) + a(n - a(n - 4)), with a(1) = ... = a(4) = 1.
1, 1, 1, 1, 2, 3, 4, 5, 5, 6, 6, 7, 8, 8, 9, 9, 10, 11, 11, 11, 12, 12, 13, 14, 14, 15, 15, 16, 17, 17, 17, 18, 18, 19, 20, 20, 21, 21, 22, 22, 22, 23, 23, 24, 25, 25, 26, 26, 27, 27, 28, 29, 29, 29, 30, 30, 31, 32, 32, 33, 33, 34, 34, 34, 35, 35, 36, 37, 37, 38, 38, 39, 39, 40
Offset: 1
Links
- T. D. Noe and N. J. A. Sloane, Table of n, a(n) for n = 1..10000
- Altug Alkan, On a Generalization of Hofstadter's Q-Sequence: A Family of Chaotic Generational Structures, Complexity (2018) Article ID 8517125.
- B. Balamohan, A. Kuznetsov, and S. Tanny, On the behavior of a variant of Hofstadter's Q-sequence, J. Integer Sequences, Vol. 10 (2007), #07.7.1.
- Jonathan H. B. Deane and Guido Gentile, A diluted version of the problem of the existence of the Hofstadter sequence, arXiv:2311.13854 [math.NT], 2023.
- A. Isgur, R. Lech, S. Moore, S. Tanny, Y. Verberne, and Y. Zhang, Constructing New Families of Nested Recursions with Slow Solutions, SIAM J. Discrete Math., 30(2), 2016, 1128-1147. (20 pages); DOI:10.1137/15M1040505
- Kellie O'Connor Gutman, V(n) = V(n - V(n - 1)) + V(n - V(n - 4)), The Mathematical Intelligencer, Volume 23, Number 3, Summer 2001, page 50.
- Index entries for Hofstadter-type sequences
Crossrefs
Programs
-
Haskell
a063882 n = a063882_list !! (n-1) a063882_list = 1 : 1 : 1 : 1 : zipWith (+) (map a063882 $ zipWith (-) [5..] a063882_list) (map a063882 $ zipWith (-) [5..] $ drop 3 a063882_list) -- Reinhard Zumkeller, Dec 08 2011
-
Maple
a := proc(n) option remember; if n<=4 then 1 else if n > a(n-1) and n > a(n-4) then RETURN(a(n-a(n-1))+a(n-a(n-4))); else ERROR(" died at n= ", n); fi; fi; end;
-
Mathematica
a[1]=a[2]=a[3]=a[4]=1;a[n_]:=a[n]=a[n-a[n-1]]+a[n-a[n-4]];Table[a[n],{n,80}]
Formula
n/2 < a(n) <= n/2 + log_2 (n) - 1 for all n > 6 [Balamohan et al., Proposition 5].
Extensions
Edited by N. J. A. Sloane, Nov 06 2007
Mathematica program corrected by Harvey P. Dale, Jan 24 2025
Comments