A000369 Triangle of numbers related to triangle A049213; generalization of Stirling numbers of second kind A008277, Bessel triangle A001497.
1, 3, 1, 21, 9, 1, 231, 111, 18, 1, 3465, 1785, 345, 30, 1, 65835, 35595, 7650, 825, 45, 1, 1514205, 848925, 196245, 24150, 1680, 63, 1, 40883535, 23586255, 5755050, 775845, 62790, 3066, 84, 1, 1267389585, 748471185, 190482705, 27478710
Offset: 1
Examples
Triangle begins: 1; 3, 1; 21, 9, 1; 231, 111, 18, 1; 3465, 1785, 345, 30, 1; ... Tree combinatorics for a(3,2)=9: there are three m=2 forests each with one tree a root (with out-degree r=0) and the other tree a root and a leaf coming in three versions (like for a 3-ary vertex). Each such forest can be labeled increasingly in three ways (like (1,(23)), (2,(13)) and (3,(12))) yielding 9 such forests. - _Wolfdieter Lang_, Oct 12 2007
Links
- Vincenzo Librandi, Rows n = 1..50, flattened
- P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, arXiv:quant-ph/0212072, 2002.
- Tom Copeland, A Class of Differential Operators and the Stirling Numbers
- M. Janjic, Some classes of numbers and derivatives, JIS 12 (2009) 09.8.3
- Wolfdieter Lang, First ten rows.
- Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
- Toufik Mansour, Matthias Schork and Mark Shattuck, The Generalized Stirling and Bell Numbers Revisited, Journal of Integer Sequences, Vol. 15 (2012), #12.8.3.
- Mathias Pétréolle, Alan D. Sokal, Lattice paths and branched continued fractions. II. Multivariate Lah polynomials and Lah symmetric functions, arXiv:1907.02645 [math.CO], 2019.
- Index entries for sequences related to Bessel functions or polynomials
Crossrefs
Programs
-
Mathematica
a[n_, m_] /; n >= m >= 1 := a[n, m] = (4(n-1) - m)*a[n-1, m] + a[n-1, m-1]; a[n_, m_] /; n < m = 0; a[, 0] = 0; a[1, 1] = 1; Flatten[Table[a[n, m], {n, 1, 9}, {m, 1, n}]] (* _Jean-François Alcover, Jul 22 2011 *)
-
Sage
# uses[bell_transform from A264428] # Adds a column 1,0,0,0,... at the left side of the triangle. def A000369_row(n): multifact_4_3 = lambda n: prod(4*k + 3 for k in (0..n-1)) mfact = [multifact_4_3(k) for k in (0..n)] return bell_transform(n, mfact) [A000369_row(n) for n in (0..9)] # Peter Luschny, Dec 31 2015
Formula
a(n, m) = n!*A049213(n, m)/(m!*4^(n-m)); a(n+1, m) = (4*n-m)*a(n, m) + a(n, m-1), n >= m >= 1; a(n, m) := 0, n
E.g.f. of m-th column: ((1-(1-4*x)^(1/4))^m)/m!.
From Peter Bala, Jun 08 2016: (Start)
With offset 0, the e.g.f. is 1/(1 - 4*x)^(3/4)*exp(t*(1 - (1 - 4*x)^(1/4))) = 1 + (3 + t)*x + (21 + 9*t + t^2)*x^2/2! + ....
Thus with row and column numbering starting at 0, this triangle is the exponential Riordan array [d/dx(F(x)), F(x)], belonging to the Derivative subgroup of the exponential Riordan group, where F(x) = 1 - (1 - 4*x)^(1/4).
Row polynomial recurrence: R(n+1,t) = t*Sum_{k = 0..n} binomial(n,k)*A008545(k)*R(n-k,t) with R(0,t) = 1. (End)
Comments