cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A132164 Row sums of triangle A134141 (S1p(7)).

Original entry on oeis.org

1, 1, 8, 78, 918, 12846, 209616, 3909228, 81859548, 1897344828, 48135826656, 1325008302696, 39292978029768, 1247949491330088, 42236558731574208, 1516738194700667856, 57573649342673292816, 2302425590703685075728, 96720470167595138898048
Offset: 0

Views

Author

Wolfdieter Lang, Oct 12 2007

Keywords

Crossrefs

Cf. A132165 (alternating row sum of A134141), A049428.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(
          binomial(n-1, j-1)*(j+5)!/6!*a(n-j), j=1..n))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Aug 01 2017
  • Mathematica
    a[n_]:=a[n]=If[n==0, 1, Sum[Binomial[n - 1, j - 1] (j + 5)!/6! a[n - j], {j, n}]]; Table[a[n], {n, 0, 25}] (* Indranil Ghosh, Aug 02 2017, after Maple code *)

Formula

a(n)= sum(A134141(n,m),m=1..n),n>=1.
E.g.f.: exp((1-(1-x)^6)/(6*(1-x)^6)). Cf. e.g.f. first column of A134141.
From Seiichi Manyama, Jan 18 2025: (Start)
a(n) = Sum_{k=0..n} |Stirling1(n,k)| * A005012(k).
a(n) = (1/exp(1/6)) * (-1)^n * n! * Sum_{k>=0} binomial(-6*k,n)/(6^k * k!). (End)

Extensions

a(0)=1 prepended by Alois P. Heinz, Aug 01 2017