cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A132180 Expansion of f(q, q^2) * f(-q^3) / f(-q^2)^2 in powers of q where f(, ), f() are Ramanujan theta functions.

Original entry on oeis.org

1, 1, 3, 1, 6, 3, 12, 5, 21, 10, 36, 15, 60, 26, 96, 39, 150, 63, 228, 92, 342, 140, 504, 201, 732, 295, 1050, 415, 1488, 591, 2088, 818, 2901, 1140, 3996, 1554, 5460, 2126, 7404, 2861, 9972, 3855, 13344, 5126, 17748, 6816, 23472, 8970, 30876, 11793, 40413
Offset: 0

Views

Author

Michael Somos, Aug 12 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + q + 3*q^2 + q^3 + 6*q^4 + 3*q^5 + 12*q^6 + 5*q^7 + 21*q^8 + 10*q^9 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ q^3]^3 / (QPochhammer[ q] QPochhammer[ q^2] QPochhammer[ q^6]), {q, 0, n}]; (* Michael Somos, Apr 26 2015 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ -q, q^3] QPochhammer[ -q^2, q^3] QPochhammer[ q^3]^2 / QPochhammer[ q^2]^2, {q, 0, n}]; (* Michael Somos, Nov 01 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^3 + A)^3 / (eta(x + A) * eta(x^2 + A) * eta(x^6 + A)), n))};

Formula

Expansion of eta(q^3)^3 / (eta(q) * eta(q^2) * eta(q^6)) in powers of q.
Euler transform of period 6 sequence [ 1, 2, -2, 2, 1, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = (v^2 - 2*u)^3 - u^4 * (2*u - 3*v^2) * (4*u - 3*v^2).
G.f. is a period 1 Fourier series which satisfies f(-1 / (6 t)) = (2/3) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A132179.
G.f.: Product_{k>0} (1 + x^k + x^(2*k))^2 / ( (1 + x^k)^2 * (1 - x^k + x^(2*k))).
a(2*n) = A128128(n). a(2*n + 1) = A132302(n).