A132214 Numbers that are sums of seventh powers of two distinct primes.
2315, 78253, 80312, 823671, 825730, 901668, 19487299, 19489358, 19565296, 20310714, 62748645, 62750704, 62826642, 63572060, 82235688, 410338801, 410340860, 410416798, 411162216, 429825844, 473087190, 893871867, 893873926
Offset: 1
Examples
a(1) = 2^7 + 3^7 = 2315 = 5 * 463.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
P:= select(isprime, [2,seq(i,i=3..100,2)]): nP:= nops(P): N:= 2^7 + P[-1]^7: sort(convert(select(`<=`, {seq(seq(P[i]^7+P[j]^7,j=i+1..nP),i=1..nP-1)},N),list)); # Robert Israel, Jul 01 2024
-
Mathematica
Select[Sort[ Flatten[Table[Prime[n]^7 + Prime[k]^7, {n, 15}, {k, n - 1}]]], # <= Prime[15^7] &] Union[Total/@(Subsets[Prime[Range[10]],{2}]^7)] (* Harvey P. Dale, Jan 03 2012 *)
Comments