A132217 Expansion of psi(x^6) / psi(-x) in powers of x where psi() is a Ramanujan theta function.
1, 1, 1, 2, 3, 4, 6, 8, 11, 15, 19, 25, 33, 42, 53, 68, 86, 107, 134, 166, 205, 253, 309, 377, 460, 557, 672, 811, 974, 1166, 1394, 1661, 1975, 2344, 2773, 3275, 3863, 4543, 5333, 6253, 7316, 8544, 9964, 11600, 13484, 15653, 18140, 20994, 24269, 28011, 32288
Offset: 0
Keywords
Examples
G.f. = 1 + x + x^2 + 2*x^3 + 3*x^4 + 4*x^5 + 6*x^6 + 8*x^7 + 11*x^8 + 15*x^9 + ... G.f. = q^5 + q^13 + q^21 + 2*q^29 + 3*q^37 + 4*q^45 + 6*q^53 + 8*q^61 + 11*q^69 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Crossrefs
Cf. A262987.
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, x^3] / (2^(1/2) x^(5/8) EllipticTheta[ 2, Pi/4, x^(1/2)]), {x, 0, n}]; (* Michael Somos, Oct 06 2015 *) a[ n_] := SeriesCoefficient[ QPochhammer[ x^12] QPochhammer[ x^2, x^12] QPochhammer[ x^10, x^12] / QPochhammer[ x], {x, 0, n}]; (* Michael Somos, Oct 06 2015 *)
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff(eta(x^2 + A) * eta(x^12 + A)^2 / (eta(x + A) * eta(x^4 + A) * eta(x^6 + A)), n))};
Formula
Expansion of q^(-5/8) * eta(q^2) * eta(q^12)^2 / (eta(q) * eta(q^4) * eta(q^6)) in powers of q.
Euler transform of period 12 sequence [ 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, ...].
Product_{k>0} (1 - x^(12*k)) * (1 - x^(2*k) + x^(4*k)) / (1 - x^k).
Expansion of f(-x^2, -x^10) / f(-x, -x^2) in powers of x where f(, ) is Ramanujan's general theta function. - Michael Somos, Oct 06 2015
Number of partitions of n into parts not congruent to 0, 2, 10 (mod 12). - Michael Somos, Oct 06 2015
a(2*n) = A262987(n). - Michael Somos, Oct 06 2015
a(n) ~ exp(sqrt(n/2)*Pi) / (2^(11/4) * sqrt(3) * n^(3/4)). - Vaclav Kotesovec, Oct 06 2015
Comments