cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A132217 Expansion of psi(x^6) / psi(-x) in powers of x where psi() is a Ramanujan theta function.

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 6, 8, 11, 15, 19, 25, 33, 42, 53, 68, 86, 107, 134, 166, 205, 253, 309, 377, 460, 557, 672, 811, 974, 1166, 1394, 1661, 1975, 2344, 2773, 3275, 3863, 4543, 5333, 6253, 7316, 8544, 9964, 11600, 13484, 15653, 18140, 20994, 24269, 28011, 32288
Offset: 0

Views

Author

Michael Somos, Aug 13 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + x + x^2 + 2*x^3 + 3*x^4 + 4*x^5 + 6*x^6 + 8*x^7 + 11*x^8 + 15*x^9 + ...
G.f. = q^5 + q^13 + q^21 + 2*q^29 + 3*q^37 + 4*q^45 + 6*q^53 + 8*q^61 + 11*q^69 + ...
		

Crossrefs

Cf. A262987.

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, x^3] / (2^(1/2) x^(5/8) EllipticTheta[ 2, Pi/4, x^(1/2)]), {x, 0, n}]; (* Michael Somos, Oct 06 2015 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ x^12] QPochhammer[ x^2, x^12] QPochhammer[ x^10, x^12] / QPochhammer[ x], {x, 0, n}]; (* Michael Somos, Oct 06 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff(eta(x^2 + A) * eta(x^12 + A)^2 / (eta(x + A) * eta(x^4 + A) * eta(x^6 + A)), n))};

Formula

Expansion of q^(-5/8) * eta(q^2) * eta(q^12)^2 / (eta(q) * eta(q^4) * eta(q^6)) in powers of q.
Euler transform of period 12 sequence [ 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, ...].
Product_{k>0} (1 - x^(12*k)) * (1 - x^(2*k) + x^(4*k)) / (1 - x^k).
Expansion of f(-x^2, -x^10) / f(-x, -x^2) in powers of x where f(, ) is Ramanujan's general theta function. - Michael Somos, Oct 06 2015
Number of partitions of n into parts not congruent to 0, 2, 10 (mod 12). - Michael Somos, Oct 06 2015
a(2*n) = A262987(n). - Michael Somos, Oct 06 2015
a(n) ~ exp(sqrt(n/2)*Pi) / (2^(11/4) * sqrt(3) * n^(3/4)). - Vaclav Kotesovec, Oct 06 2015