cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A132268 Decimal expansion of Product_{k>0} (1-1/12^k).

Original entry on oeis.org

9, 0, 9, 7, 2, 6, 2, 6, 8, 9, 0, 5, 9, 9, 4, 8, 8, 8, 6, 3, 6, 3, 6, 2, 0, 4, 6, 9, 7, 7, 0, 8, 0, 2, 4, 9, 1, 2, 0, 7, 9, 1, 6, 9, 1, 9, 4, 1, 0, 1, 4, 2, 7, 4, 3, 2, 6, 1, 5, 4, 4, 4, 1, 2, 8, 6, 9, 0, 2, 4, 5, 7, 6, 6, 1, 9, 5, 4, 1, 6, 2, 0, 2, 6, 0, 0, 0, 5, 5, 3, 8, 8, 8, 8, 1, 0, 8, 5, 1, 4, 8, 3, 9, 7, 1, 9
Offset: 0

Views

Author

Hieronymus Fischer, Aug 20 2007

Keywords

Examples

			0.9097262689059948886363620469770...
		

Crossrefs

Programs

  • Mathematica
    digits = 106; NProduct[1-1/12^k, {k, 1, Infinity}, NProductFactors -> 100, WorkingPrecision -> digits+3] // N[#, digits+3]& // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 18 2014 *)
    N[QPochhammer[1/12,1/12]] (* G. C. Greubel, Dec 05 2015 *)
  • PARI
    prodinf(k=1, (1-1/12^k)) \\ Michel Marcus, Dec 05 2015

Formula

Equals exp(-Sum_{n>0} sigma_1(n)/(n*12^n)) = exp(-Sum_{n>0} A000203(n)/(n*12^n)).
Equals (1/12; 1/12){infinity}, where (a;q){infinity} is the q-Pochhammer symbol. - G. C. Greubel, Dec 05 2015
From Amiram Eldar, May 09 2023: (Start)
Equals sqrt(2*Pi/log(12)) * exp(log(12)/24 - Pi^2/(6*log(12))) * Product_{k>=1} (1 - exp(-4*k*Pi^2/log(12))) (McIntosh, 1995).
Equals Sum_{n>=0} (-1)^n/A027880(n). (End)