A132272 a(n) = Product_{k>0} (1 + floor(n/10^k)).
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10
Offset: 0
Examples
a(121)=(1+floor(121/10^1))*(1+floor(121/10^2))=13*2=26; a(132)=28 since 132=132(base-10) and so a(132)=(1+13)*(1+1)(base-10)=14*2=28.
Links
- R. J. Mathar, Table of n, a(n) for n = 0..500
Crossrefs
Programs
-
Maple
A132272 := proc(n) a := 1; for k from 1 do f := floor(n/10^k) ; if f <=0 then return a; else a := a*(1+f) ; end if; end do: end proc: seq(A132272(n),n=1..120) ; # R. J. Mathar, Jun 13 2025
-
Mathematica
Table[Product[1+Floor[n/10^k],{k,n}],{n,0,100}] (* Harvey P. Dale, Jul 20 2024 *)
Formula
The following formulas are given for a general parameter p considering the product of terms 1+floor(n/p^k) for 0
Recurrence: a(n)=(1+floor(n/p))*a(floor(n/p)); a(pn)=(1+n)*a(n); a(n*p^m)=product{0<=k
a(k*p^m-j)=k^m*p^(m(m-1)/2), for 0=1. a(p^m)=p^(m(m-1)/2)*product{0<=k
Asymptotic behavior: a(n)=O(n^((log_p(n)-1)/p)); this follows from the inequalities below.
a(n)<=A067080(n)/(n+1)*product{0<=k<=floor(log_p(n)), 1+1/p^k}.
a(n)>=A067080(n)/((n+1)*product{0
a(n)A000217(log_p(n))/(n+1), where c=product{k>0, 1+1/p^k}=2.2244691382741012... (for p=10 see constant A132325).
a(n)>n^((1+log_p(n))/2)/(n+1)=p^A000217(log_p(n))/(n+1).
lim sup n*a(n)/A067080(n)=2*product{k>0, 1+1/p^k}=2.2244691382741012..., for n-->oo (for p=10 see constant A132325).
lim inf n*a(n)/A067080(n)=1/product{k>0, 1-1/p^k}=1/0.8900100999989990000001000..., for n-->oo (for p=10 s. constant A132038).
lim inf a(n)/n^((1+log_p(n))/2)=1, for n-->oo.
lim sup a(n)/n^((1+log_p(n))/2)=2*product{k>0, 1+1/p^k}=2.2244691382741012..., for n-->oo (for p=10 see constant A132325).
lim inf a(n+1)/a(n)=2*product{k>0, 1+1/p^k}=2.2244691382741012... for n-->oo (for p=10 see constant A132325).
Comments