cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A132274 a(1)=1; a(n+1) = Sum_{k=1..n} (k-th integer from among those positive integers which are coprime to a(n+1-k)).

Original entry on oeis.org

1, 1, 3, 6, 10, 19, 27, 41, 51, 66, 78, 101, 119, 145, 167, 197, 219, 247, 272, 306, 335, 371, 403, 443, 477, 521, 559, 609, 647, 693, 737, 789, 834, 886, 940, 996, 1055, 1118, 1176, 1243, 1306, 1385, 1450, 1523, 1596, 1676, 1749, 1844, 1914, 2010, 2092, 2188
Offset: 1

Views

Author

Leroy Quet, Aug 16 2007

Keywords

Examples

			The integers coprime to a(1)=1 are 1,2,3,4,5,6,... The 5th of these is 5. The integers coprime to a(2)=1 are 1,2,3,4,5... The 4th of these is 4. The integers coprime to a(3)=3 are 1,2,4,5,7,... The 3rd of these is 4. The integers coprime to a(4)=6 are 1,5,7,11,... The 2nd of these is 5. And the integers coprime to a(5)=10 are 1,3,7,9,11,... The first of these is 1. So a(6) = 5 + 4 + 4 + 5 + 1 = 19.
		

Crossrefs

Programs

  • Maple
    A132274 := proc(n) option remember; local a,k,an1k,kcoud,c ; if n = 1 then 1; else a :=0 ; for k from 1 to n-1 do an1k := procname(n-k) ; kcoud := 0 ; for c from 1 do if gcd(c,an1k) = 1 then kcoud := kcoud+1 ; fi; if kcoud = k then a := a+c ; break; fi; od: od: a; fi; end: seq(A132274(n),n=1..60) ; # R. J. Mathar, Jul 20 2009
  • Mathematica
    A132274[n_] := A132274[n] = Module[{a, k, an1k, kcoud, c}, If[n == 1, 1, a = 0; For[k = 1, k <= n-1, k++, an1k = A132274[n-k]; kcoud = 0; For[c = 1, True, c++, If[GCD[c, an1k] == 1, kcoud++]; If[kcoud == k, a = a+c; Break[]]]]; a]];
    Table[A132274[n], {n, 1, 60}] (* Jean-François Alcover, Jan 28 2024, after R. J. Mathar *)

Extensions

Extended beyond a(8) by R. J. Mathar, Jul 20 2009

A132275 a(1)=1. a(n+1) = sum{k=1 to n} (a(k)th integer from among those positive integers which are coprime to a(n+1-k)).

Original entry on oeis.org

1, 1, 2, 4, 8, 17, 37, 81, 177, 387, 847, 1856, 4066, 8910, 19524, 42783, 93760, 205475, 450282, 986770, 2162473, 4738974, 10385267, 22758885, 49875175, 109299427, 239525260, 524909877, 1150318695, 2520876742, 5524399079, 12106496388, 26530895539, 58141380910
Offset: 1

Views

Author

Leroy Quet, Aug 16 2007

Keywords

Examples

			To compute a(5) we add the first integer coprime to a(4), the first integer coprime to a(3), the 2nd integer coprime to a(2) and the 4th integer coprime to a(1), which is the first integer in {1,3,4,5,..}, the first integer in {1,2,3,4,...}, the 2nd integer in {1,2,3,4,...} and the 4th integer in {1,2,3,4,..} = 1+1+2+4=8.
		

Crossrefs

Programs

  • Maple
    A132275 := proc(n) option remember; local a,k,an1k,kcoud,c ; if n = 1 then 1; else a :=0 ; for k from 1 to n-1 do an1k := procname(n-k) ; kcoud := 0 ; for c from 1 do if gcd(c,an1k) = 1 then kcoud := kcoud+1 ; fi; if kcoud = procname(k) then a := a+c ; break; fi; od: od: a; fi; end:
    seq(A132275(n),n=1..18) ; # R. J. Mathar, Jul 20 2009
    with(numtheory): fc:= proc(t,p) option remember; local m, j, h, pp; if p=1 then t else pp:= phi(p); m:= iquo(t,pp); j:= m*pp; h:= m*p-1; while jAlois P. Heinz, Aug 05 2009
  • Mathematica
    fc[t_, p_] := fc[t, p] = Module[{m, j, h, pp}, If[p==1, t, pp = EulerPhi[p]; m = Quotient[t, pp]; j = m*pp; h = m*p-1; While[jJean-François Alcover, Mar 21 2017, after Alois P. Heinz *)

Extensions

Corrected from a(5) on by R. J. Mathar, Jul 21 2009
Extended beyond a(19) Alois P. Heinz, Aug 05 2009

A130767 a(n) = product{k=1 to n} (k-th integer from among those positive integers which are coprime to (n+1-k)).

Original entry on oeis.org

1, 2, 9, 40, 420, 2700, 56595, 419328, 8820900, 88488400, 2327925600, 38767286880, 1912404574080, 21612951360000, 644047087612500, 10985391056640000, 634391869996684800, 14046187624838328960, 764077915447610400000, 15840110879873280000000, 755098009918296312668400
Offset: 1

Views

Author

Leroy Quet, Aug 18 2007

Keywords

Comments

a(n) is the product of the terms in the n-th antidiagonal of the A126572 array. - Michel Marcus, Mar 14 2018

Examples

			The integers coprime to 1 are: 1,2,3,4,5,6,... The 5th of these is 5. The integers coprime to 2 are: 1,3,5,7,9,... The 4th of these is 7. The integers coprime to 3 are: 1,2,4,5,7,... The 3rd of these is 4. The integers coprime to 4 are: 1,3,5,... The 2nd of these is 3. And the integers coprime to 5 are: 1,2,3,4,6,... The first of these is 1. So a(5) = 5 * 7 * 4 * 3 * 1 = 420.
		

Crossrefs

Programs

  • PARI
    cop(k, j) = {my(nbc = 0, i = 0); while (nbc != j, i++; if (gcd(i,k)==1, nbc++)); i;}
    a(n) = {my(vc = vector(n, k, cop(k, n-k+1))); prod(k=1, n, vc[k]);} \\ Michel Marcus, Mar 14 2018

Extensions

More terms from Michel Marcus, Mar 14 2018

A130802 a(1) = 1; a(n+1) = Sum_{k=1..n} (a(k)-th integer from among those positive integers which are coprime to (n+1-k)).

Original entry on oeis.org

1, 1, 2, 4, 9, 20, 47, 110, 260, 614, 1448, 3421, 8081, 19092, 45107, 106567, 251768, 594816, 1405285, 3320066, 7843851, 18531547, 43781846, 103437135, 244376187, 577352823, 1364029309, 3222597827, 7613573030, 17987504932, 42496516727, 100400469160
Offset: 1

Views

Author

Leroy Quet, Aug 20 2007

Keywords

Examples

			The integers coprime to 5 are 1, 2, 3, 4, 6, ... The a(1)-th=1st of these is 1. The integers coprime to 4 are 1, 3, 5, ... The a(2)-th=1st of these is 1. The integers coprime to 3 are 1, 2, 4, 5, ... The a(3)-th=2nd of these is 2. The integers coprime to 2 are 1, 3, 5, 7, 9, ... The a(4)-th=4th of these is 7. And the integers coprime to 1 are 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ... The a(5)-th=9th of these is 9. So a(6) = 1 + 1 + 2 + 7 + 9 = 20.
		

Crossrefs

Programs

  • Maple
    with(numtheory): fc:= proc(t,p) option remember; local m, j, h, pp; if p=1 then t else pp:= phi(p); m:= iquo(t,pp); j:= m*pp; h:= m*p-1; while jAlois P. Heinz, Aug 05 2009
  • Mathematica
    fc[t_, p_] := fc[t, p] = Module[{m, j, h, pp}, If[p == 1, t, pp = EulerPhi[p]; m = Quotient[t, pp]; j = m pp; h = m p - 1; While[j < t, h++; If[GCD[p, h] == 1, j++]]; h]];
    a[n_] := a[n] = If [n == 1, 1, Sum[fc[a[k], (n - k)], {k, 1, n - 1}]];
    Array[a, 35] (* Jean-François Alcover, Nov 19 2020, after Alois P. Heinz *)

Extensions

More terms from Alois P. Heinz, Aug 05 2009
Showing 1-4 of 4 results.