cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A132276 Triangle read by rows: T(n,k) is the number of paths in the first quadrant from (0,0) to (n,k), consisting of steps U=(1,1), D=(1,-1), h=(1,0) and H=(2,0) (0<=k<=n).

Original entry on oeis.org

1, 1, 1, 3, 2, 1, 6, 7, 3, 1, 16, 18, 12, 4, 1, 40, 53, 37, 18, 5, 1, 109, 148, 120, 64, 25, 6, 1, 297, 430, 369, 227, 100, 33, 7, 1, 836, 1244, 1146, 760, 385, 146, 42, 8, 1, 2377, 3656, 3519, 2518, 1391, 606, 203, 52, 9, 1, 6869, 10796, 10839, 8188, 4900, 2346, 903, 272
Offset: 0

Views

Author

Emeric Deutsch, Aug 16 2007, Sep 03 2007

Keywords

Comments

Mirror image of A059397. - Emeric Deutsch, Aug 18 2007
Row sums yield A059398.
Riordan matrix (g(x),x*g(x)), where g(x) = (1-x-x^2-sqrt(1-2*x-5*x^2+2*x^3+x^4))/(2*x^2). - Emanuele Munarini, May 05 2011

Examples

			T(3,2) = 3 because we have UUh, UhU and hUU.
Triangle begins:
    1;
    1,   1;
    3,   2,   1;
    6,   7,   3,  1;
   16,  18,  12,  4,  1;
   40,  53,  37, 18,  5, 1;
  109, 148, 120, 64, 25, 6, 1;
  ...
		

References

  • Lin Yang and S.-L. Yang, The parametric Pascal rhombus. Fib. Q., 57:4 (2019), 337-346.

Crossrefs

Cf. A059397, A128720 (the leading diagonal).
Cf. A059398.

Programs

  • Maple
    g:=((1-z-z^2-sqrt((1+z-z^2)*(1-3*z-z^2)))*1/2)/z^2: G:=simplify(g/(1-t*z*g)): Gser:=simplify(series(G,z=0,13)): for n from 0 to 10 do P[n]:=sort(coeff(Gser, z,n)) end do: for n from 0 to 10 do seq(coeff(P[n], t, j), j = 0 .. n) end do; # yields sequence in triangular form
  • Mathematica
    Flatten[Table[Sum[Binomial[2i+k,i]*(k+1)/(i+k+1)*Sum[Binomial[n-j,2i+k]*Binomial[n-k-2i-j,j],{j,0,n-k-2i}],{i,0,(n-k)/2}],{n,0,15},{k,0,n}]] (* Emanuele Munarini, May 05 2011 *)
    c[x_] := (1 - Sqrt[1 - 4*x])/(2*x); g[z_] := c[z^2/(1 - z - z^2)^2]/(1 - z - z^2); G[t_, z_] := g[z]/(1 - t*z*g[z]); CoefficientList[ CoefficientList[Series[G[t, x], {x, 0, 49}, {t, 0, 49}], x], t]//Flatten (* G. C. Greubel, Dec 02 2017 *)
  • Maxima
    create_list(sum(binomial(2*i+k,i) * (k+1)/(i+k+1) * sum(binomial(n-j,2*i+k) * binomial(n-k-2*i-j,j),j,0,n-k-2*i), i,0,(n-k)/2), n,0,15, k,0,n); /* Emanuele Munarini, May 05 2011 */
    
  • PARI
    T(n,k) = sum(i=0, (n-k)/2, (binomial(2*i+k,i)*(k+1)/(i+k+1))*sum(j=0, n-k-2*i, binomial(n-j,2*i+k)*binomial(n-k-2*i-j,j))) \\ G. C. Greubel, Nov 29 2017

Formula

T(n,0) = A128720(n).
G.f.: G(t,z) = g/(1-t*z*g), where g = 1 +z*g +z^2*g +z^2*g^2 or g = c(z^2/(1-z-z^2)^2)/(1-z-z^2), where c(z) = (1-sqrt(1-4*z))/(2*z) is the Catalan function.
T(n,k) = T(n-1,k-1) + T(n-1,k) + T(n-1,k+1) + T(n-2,k). - Emeric Deutsch, Aug 18 2007
Column k has g.f. z^k*g^(k+1), where g = 1 +z*g +z^2*g +z^2*g^2 = (1 -z-z^2 -sqrt((1+z-z^2)*(1-3*z-z^2)))/(2*z^2).
T(n,k) = Sum_{i=0..(n-k)/2} (binomial(2*i+k,i)*(k+1)/(i+k+1))*Sum_{j=0..(n-k-2*i)} binomial(n-j,2*i+k)*binomial(n-k-2*i-j,j). - Emanuele Munarini, May 05 2011 [corrected by Jason Yuen, Apr 08 2025]