cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A132281 Noncomposites in A067200. Noncomposites (0, 1) and primes p such that A084380(p) = p^3 + 2 is prime.

Original entry on oeis.org

0, 1, 3, 5, 29, 71, 83, 113, 173, 263, 311, 419, 431, 491, 503, 509, 683, 701, 761, 773, 839, 911, 953, 1031, 1091, 1103, 1151, 1193, 1259, 1283, 1373, 1451, 1523, 1583, 1601, 1733, 1823, 1889, 1931, 2099, 2153, 2213, 2273, 2339, 2351, 2441, 2531, 2543
Offset: 1

Views

Author

Jonathan Vos Post, Aug 16 2007

Keywords

Comments

The corresponding near-cube primes are A132282. Analog of near-square primes. After a(1) = 0, all values must be odd. Numbers of the form n^2+2 for n=1, 2, ... are 3, 6, 11, 18, 27, 38, 51, 66, 83, 102, ... (A059100). These are prime for indices n = 1, 3, 9, 15, 21, 33, 39, 45, 57, 81, 99, ... (A067201), corresponding to the near-square primes 3, 11, 83, 227, 443, 1091, 1523, 2027, ... (A056899). Helfgott proves with minor conditions that: "Let f be a cubic polynomial. Then there are infinitely many primes p such that f(p) is squarefree." Note that 47^3 + 2 = 103825 = 5^2 * 4153 and similarly 97^3 + 2 is divisible by 5^2, but otherwise an infinite number of p^3+2 are squarefree.

Examples

			a(1) = 0 because 0^3 + 2 = 2 is prime and 0 is noncomposite.
a(2) = 1 because 1^3 + 2 = 5 is prime and 1 is noncomposite.
a(3) = 3 because 3^3 + 2 = 29 is prime and 3 is prime.
a(4) = 5 because 5^3 + 2 = 127 is prime and 5 is prime.
a(5) = 29 because 29^3 + 2 = 24391 is prime.
45 is not in the sequence because, although 45^3 + 2 = 91127 is prime, 45 is not prime.
63 is not in the sequence because, although 63^3 + 2 = 250049 is prime, 63 is not prime.
65 is not in the sequence because, although 65^3 + 2 = 274627 is prime, 65 is not prime.
a(6) = 71 because 71^3 + 2 = 357913 is prime.
a(7) = 83 because 83^3 + 2 = 571789 is prime.
a(8) = 113 because 113^3 + 2 = 1442899 is prime.
123 is not in the sequence because, although 123^3 + 2 = 1860869 is prime, 123 is not prime.
		

Crossrefs

Formula

{p in A000040 such that A067200(p) = A084380(p) = p^3 + 2 is in A000040}.
Union of {0,1} and A048637. - R. J. Mathar, Oct 18 2007

Extensions

More terms from R. J. Mathar, Oct 18 2007