cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A132282 Near-cube primes: primes of the form p^3 + 2, where p is noncomposite.

Original entry on oeis.org

2, 3, 29, 127, 24391, 357913, 571789, 1442899, 5177719, 18191449, 30080233, 73560061, 80062993, 118370773, 127263529, 131872231, 318611989, 344472103, 440711083, 461889919, 590589721, 756058033, 865523179, 1095912793
Offset: 1

Views

Author

Jonathan Vos Post, Aug 16 2007

Keywords

Comments

The corresponding near-cube prime indices q are A132281. Analog of near-square primes. After a(1) = 2, all values must be odd. Numbers of the form n^2+2 for n=1, 2, ... are 3, 6, 11, 18, 27, 38, 51, 66, 83, 102, ... (A059100). These are prime for indices n = 1, 3, 9, 15, 21, 33, 39, 45, 57, 81, 99, ... (A067201), corresponding to the near-square primes 3, 11, 83, 227, 443, 1091, 1523, 2027, ... (A056899). Helfgott proves with minor conditions that: "Let f be a cubic polynomial. Then there are infinitely many primes p such that f(p) is squarefree." Note that 47^3 + 2 = 103825 = 5^2 * 4153 and similarly 97^3 + 2 is divisible by 5^2, but otherwise an infinite number of p^3+2 are squarefree.

Examples

			a(1) = 0^3 + 2 = 2 is prime and 0 is noncomposite.
a(2) = 1^3 + 2 = 3 is prime and 1 is noncomposite.
a(3) = 3^3 + 2 = 29 is prime and 3 is prime.
a(4) = 5^3 + 2 = 127 is prime and 5 is prime.
a(5) = 29^3 + 2 = 24391 is prime and 29 is prime.
45^3 + 2 = 91127 is prime, but not in this sequence because 45 is not prime.
63^3 + 2 = 250049 is prime, but not in this sequence because 63 is not prime.
a(6) = 71^3 + 2 = 357913 is prime.
a(7) = 83^3 + 2 = 571789 is prime.
a(8) = 113^3 + 2 = 1442899 is prime.
		

Crossrefs

Programs

  • Mathematica
    Join[{2, 5}, Select[Prime[Range[200]]^3 + 2, PrimeQ[ # ] &]] (* Stefan Steinerberger, Aug 17 2007 *)
  • PARI
    v=[2,3]; forprime(p=3, 1e4, if(isprime(t=p^3+2), v=concat(v, t))); t \\ Charles R Greathouse IV, Feb 14 2011

Formula

a(n) = A132281(n)^3 + 2. {p in A000040 such that for some q = 0, 1, or q in A000040, we have p = A067200(q) = A084380(q) = q^3 + 2 is in A000040}.
a(n) = A048636(n-2) for n >= 3. - Georg Fischer, Nov 03 2018

Extensions

More terms from Stefan Steinerberger, Aug 17 2007
a(2) corrected by Charles R Greathouse IV, Feb 14 2011

A155187 Prime numbers q of primitive Pythagorean triangles such that perimeters are averages of twin prime pairs, p+1=q(prime), a=q^2-p^2, c=q^2+p^2, b=2*p*q, ar=a*b/2; s=a+b+c, s-+1 are primes.

Original entry on oeis.org

2, 3, 11, 71, 227, 491, 683, 1103, 1187, 2591, 3923, 4271, 4931, 6737, 7193, 7703, 8093, 8753, 8963, 9173, 9377, 10271, 13043, 13451, 13997, 15233, 15443, 15803, 15887, 17957, 18701, 19961, 20681, 21701, 22031, 22073, 24371, 24473, 24683
Offset: 1

Views

Author

Keywords

Comments

p=1, q=2(prime), a=3, b=4, c=5, s=12-+1 primes, ...

Crossrefs

Programs

  • Mathematica
    lst={};Do[p=n;q=p+1;a=q^2-p^2;c=q^2+p^2;b=2*p*q;ar=a*b/2;s=a+b+c;If[PrimeQ[s-1]&&PrimeQ[s+1],If[PrimeQ[q],AppendTo[lst,q]]],{n,8!}];lst
Showing 1-2 of 2 results.