cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A132318 Triangle, read by rows, where T(n,k) = [x^(k*2^(n-1))] Product_{i=0..n-1} (1 + x^(2^i))^(2^(n-i-1)) for n>0 with T(0,0)=1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 15, 15, 1, 1, 1024, 2046, 1024, 1, 1, 7048181, 60060682, 60060682, 7048181, 1, 1, 469389728563470, 72057594037927935, 143176408618728932, 72057594037927935, 469389728563470, 1, 1, 2954306864416502250656677496683
Offset: 0

Views

Author

Paul D. Hanna, Aug 19 2007

Keywords

Comments

There are n*2^(n-1)+1 coefficients in P(n) = Product_{i=0..n-1} (1 + x^(2^i))^(2^(n-i-1)) for n>0; in this triangle, row n consists of coefficients of x^(k*2^(n-1)) in P(n) as k=0..n.

Examples

			Triangle begins:
1;
1,1;
1,2,1;
1,15,15,1;
1,1024,2046,1024,1;
1,7048181,60060682,60060682,7048181,1;
1,469389728563470,72057594037927935,143176408618728932,72057594037927935,469389728563470,1;
Examples:
T(2,1) = [x^(1*2)] (1+x)^2*(1+x^2) = 2;
T(3,1) = [x^(1*4)] (1+x)^4*(1+x^2)^2*(1+x^4) = 15;
T(4,3) = [x^(3*8)] (1+x)^8*(1+x^2)^4*(1+x^4)^2*(1+x^8) = 1024;
T(5,3) = [x^(3*16)] (1+x)^16*(1+x^2)^8*(1+x^4)^4*(1+x^8)^2*(1+x^16) = 60060682.
		

Crossrefs

Cf. A132317 (column 1), A132316.

Programs

  • PARI
    {T(n,k)=if(n==0,1,polcoeff(prod(i=0,n-1,(1+x^(2^i)+x*O(x^(k*2^(n-1))))^(2^(n-i-1))),k*2^(n-1)))}

Formula

Row sums equal 2^(2^n - n) for n>0 - improved formula and proof by Max Alekseyev, Aug 19 2007.