cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A132332 G.f.: A(x) = A_1 where A_1 = 1/[1 - x*(A_2)^2], A_2 = 1/[1 - x^2*(A_3)^2], A_3 = 1/[1 - x^3*(A_4)^2], ... A_n = 1/[1 - x^n*(A_{n+1})^2] for n>=1.

Original entry on oeis.org

1, 1, 1, 3, 5, 10, 23, 44, 93, 193, 398, 828, 1711, 3548, 7352, 15238, 31569, 65414, 135557, 280856, 581970, 1205860, 2498520, 5177008, 10726715, 22225674, 46051484, 95417966, 197704676, 409640915, 848768686, 1758633069, 3643854113
Offset: 0

Views

Author

Paul D. Hanna, Aug 20 2007

Keywords

Crossrefs

Cf. A132333 (self-convolution); A132334 (variant).

Programs

  • PARI
    {a(n)=local(A=1+x*O(x^n)); for(j=0, n-1, A=1/(1-x^(n-j)*A^2 +x*O(x^n))); polcoeff(A, n)}
    
  • PARI
    N = 66;  q = 'q + O('q^N);
    G(k) = if(k>N, 1, 1 - q^(k+1) / G(k+1)^2 );
    gf = 1 / G(0);
    Vec(gf) \\ Joerg Arndt, Jul 06 2013

Formula

G.f.: 1/G(0) where G(k) = 1 - q^(k+1) / G(k+1)^2. [Joerg Arndt, Jul 06 2013]