A132333 G.f.: A(x) = (A_1)^2 where A_1 = 1/[1 - x*(A_2)^2], A_2 = 1/[1 - x^2*(A_3)^2], A_3 = 1/[1 - x^3*(A_4)^2], ... A_n = 1/[1 - x^n*(A_{n+1})^2] for n>=1.
1, 2, 3, 8, 17, 36, 85, 184, 405, 898, 1962, 4296, 9371, 20376, 44244, 95844, 207217, 447264, 963835, 2073900, 4456374, 9563620, 20499344, 43891176, 93877423, 200594560, 428231448, 913400192, 1946652868, 4145533218, 8821743618
Offset: 0
Keywords
Programs
-
PARI
{a(n)=local(A=1+x*O(x^n)); for(j=0, n-1, A=1/(1-x^(n-j)*A^2 +x*O(x^n))); polcoeff(A^2, n)}
Comments