A132374 Expansion of c(7*x^2)/(1 - x*c(7*x^2)), where c(x) is the g.f. of A000108.
1, 1, 8, 15, 120, 274, 2192, 5531, 44248, 118686, 949488, 2654646, 21237168, 61189668, 489517344, 1443039123, 11544312984, 34648845862, 277190766896, 844131474530, 6753051796240, 20813234394492, 166505875155936, 518373091849502
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
Magma
R
:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( (1-Sqrt(1-28*x^2))/(14*x^2 -x*(1-Sqrt(1-28*x^2))) )); // G. C. Greubel, Nov 08 2022 -
Mathematica
CoefficientList[Series[(1-Sqrt[1-28*x^2])/(14*x^2 -x*(1-Sqrt[1-28*x^2])), {x,0,40}], x] (* G. C. Greubel, Nov 08 2022 *)
-
SageMath
def A120730(n, k): return 0 if (n>2*k) else binomial(n, k)*(2*k-n+1)/(k+1) def A132374(n): return sum(7^(n-k)*A120730(n,k) for k in range(n+1)) [A132374(n) for n in range(51)] # G. C. Greubel, Nov 08 2022
Formula
a(n) = Sum_{k=0..n} A120730(n,k) * 7^(n-k).
From G. C. Greubel, Nov 08 2022: (Start)
a(n) = 4*( 2*(n+1)*a(n-1) + 7*(n-2)*a(n-2) - 56*(n-2)*a(n-3) )/(n+1).
G.f.: (1 - sqrt(1 - 28*x^2))/(14*x^2 - x*(1 - sqrt(1 - 28*x^2))). (End)
Comments