cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A132390 Number of binary pattern classes in the (2,n)-rectangular grid; two patterns are in same class if one of them can be obtained by reflection or rotation of the other one.

Original entry on oeis.org

3, 6, 24, 76, 288, 1072, 4224, 16576, 66048, 262912, 1050624, 4197376, 16785408, 67121152, 268468224, 1073790976, 4295098368, 17180065792, 68720001024, 274878693376, 1099513724928, 4398049656832, 17592194433024, 70368756760576
Offset: 1

Views

Author

Yosu Yurramendi, Aug 26 2008

Keywords

Comments

A005418 is the solution for the problem in the (1,n)-rectangular grid.
For n != 2, a(n) = 4^(n-1) + 2*A133572(n-1). - Jon E. Schoenfield, Aug 25 2009
A225826 is the same sequence, except a(2)=7. Here, 90-degree rotation is allowed, so a(2)=6. [Yosu Yurramendi, May 18 2013 - communicated by Jon E. Schoenfield]

Crossrefs

Programs

  • Magma
    I:=[3,6,24,76,288]; [n le 5 select I[n] else 4*Self(n-1)+4*Self(n-2)-16*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Sep 04 2013
  • Mathematica
    CoefficientList[Series[-(16 x^4 - 4 x^3 + 12 x^2 + 6 x - 3) / ((2 x - 1) (2 x + 1) (4 x - 1)), {x, 0, 30}], x] (* Vincenzo Librandi, Sep 04 2013 *)
    LinearRecurrence[{4,4,-16},{3,6,24,76,288},30] (* Harvey P. Dale, Sep 22 2016 *)

Formula

For n != 2, a(n) = 4^(n-1) + 2^(n-2)*(3 + (n mod 2)). - Jon E. Schoenfield, Aug 25 2009
From Colin Barker, May 20 2013: (Start)
a(n) = 2^(-3+n)*(7 - (-1)^n + 2^(1+n)) for n > 2.
a(n) = 4*a(n-1) + 4*a(n-2) - 16*a(n-3), n >= 6.
G.f.: -x*(16*x^4 - 4*x^3 + 12*x^2 + 6*x - 3) / ((2*x-1)*(2*x+1)*(4*x-1)). (End)

Extensions

More terms from Jon E. Schoenfield, Aug 25 2009, corrected Aug 30 2009