A132390 Number of binary pattern classes in the (2,n)-rectangular grid; two patterns are in same class if one of them can be obtained by reflection or rotation of the other one.
3, 6, 24, 76, 288, 1072, 4224, 16576, 66048, 262912, 1050624, 4197376, 16785408, 67121152, 268468224, 1073790976, 4295098368, 17180065792, 68720001024, 274878693376, 1099513724928, 4398049656832, 17592194433024, 70368756760576
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (4,4,-16).
Programs
-
Magma
I:=[3,6,24,76,288]; [n le 5 select I[n] else 4*Self(n-1)+4*Self(n-2)-16*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Sep 04 2013
-
Mathematica
CoefficientList[Series[-(16 x^4 - 4 x^3 + 12 x^2 + 6 x - 3) / ((2 x - 1) (2 x + 1) (4 x - 1)), {x, 0, 30}], x] (* Vincenzo Librandi, Sep 04 2013 *) LinearRecurrence[{4,4,-16},{3,6,24,76,288},30] (* Harvey P. Dale, Sep 22 2016 *)
Formula
For n != 2, a(n) = 4^(n-1) + 2^(n-2)*(3 + (n mod 2)). - Jon E. Schoenfield, Aug 25 2009
From Colin Barker, May 20 2013: (Start)
a(n) = 2^(-3+n)*(7 - (-1)^n + 2^(1+n)) for n > 2.
a(n) = 4*a(n-1) + 4*a(n-2) - 16*a(n-3), n >= 6.
G.f.: -x*(16*x^4 - 4*x^3 + 12*x^2 + 6*x - 3) / ((2*x-1)*(2*x+1)*(4*x-1)). (End)
Extensions
More terms from Jon E. Schoenfield, Aug 25 2009, corrected Aug 30 2009
Comments