A132402 Binomial transform of A004524 starting at 1.
1, 3, 7, 15, 32, 70, 156, 348, 768, 1672, 3600, 7696, 16384, 34784, 73664, 155584, 327680, 688256, 1442048, 3014912, 6291456, 13106688, 27261952, 56622080, 117440512, 243271680, 503320576, 1040191488, 2147483648
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (6,-14,16,-8).
Programs
-
Mathematica
LinearRecurrence[{6,-14,16,-8},{1,3,7,15},30] (* Harvey P. Dale, Mar 30 2022 *)
Formula
a(n+1)-2a(n) = 1, 1, 1, 2, 6, 16, 36, 72, 136, 256 = essentially A038503.
O.g.f.: (1-x)^3/[(1-2x+2x^2)(-1+2x)^2]. a(n)=6*a(n-1)-14*a(n-2)+16*a(n-3)-8*a(n-4). - R. J. Mathar, Apr 02 2008
4*a(n) = (n+4)*2^n+2*A009545(n). - R. J. Mathar, Nov 01 2021
Extensions
More terms from R. J. Mathar, Apr 02 2008
Comments