cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A132404 Smallest short legs 'A' of exactly n primitive Pythagorean triangles.

Original entry on oeis.org

3, 20, 60, 204, 5040, 420, 660, 2040
Offset: 1

Views

Author

Keywords

Comments

Where records occur in A024359. a(12) = 13860, a(13) = 4620, and a(14) = 7140. - T. D. Noe, Feb 23 2012
From Colin Barker, Oct 25 2015: (Start)
a(11) = 872100, a(15) = 22440 and a(16) = 55440.
a(9), a(10), a(17), a(18), a(19) and a(20) are not less than 6000000.
(End)

Examples

			The solutions for the first 7 are
1, (3,4,5)
2, (20,21,29), (20,99,101)
3, (60,91,109), (60,221,229), (60,899,901)
4, (204,253,325), (204,1147,1165), (204,2597,2605), (204,10403,10405)
5, (5040,78319,78481), (5040,99161,99289), (5040,129551,129649), (5040,253991,254041), (5040,6350399,6350401)
6, (420,851,949), (420,1189,1261), (420,1739,1789), (420,4891,4909), (420,11021,11029), (420,44099,44101)
7, (660,779,1021), (660,989,1189), (660,2989,3061), (660,4331,4381), (660,12091,12109), (660,27221,27229), (660,108899,108901)
		

Crossrefs

Cf. A024359.

Programs

  • Mathematica
    PyphagoreanAs[a_] := (q={}; k=0; If[a>=8,r=4,r=1]; Do[y=(a^2+b^2)^0.5; c=IntegerPart[y]; If[c==y, p=0; If[GCD[a,b,c]==1, AppendTo[q,a.b.c]; k++ ]], {b,a+1,a^2/r}]; PrependTo[q,k]; q); lst={}; x=0; Do[w=PyphagoreanAs[n][[1]]; If[w>x, Print[Date[],"A=",n,",w=",w]; AppendTo[lst,n]; x=w], {n,1000}]; lst
    solns[a_] := Module[{b, c, soln}, soln = Reduce[a^2 + b^2 == c^2 && a < b && c > 0 && GCD[a, b, c] == 1, {b, c}, Integers]; If[soln === False, 0, If[soln[[1, 1]] === b, 1, Length[soln]]]]; nn = 20; t = Table[0, {nn}]; Do[s = solns[n]; If[s > nn, Print[{s, n}], If[t[[s]] == 0, t[[s]] = n; Print[{s, n}]]], {n, 5040}]; t (* T. D. Noe, Feb 23 2012 *)

Extensions

a(5) from T. D. Noe, Feb 23 2012