A132404 Smallest short legs 'A' of exactly n primitive Pythagorean triangles.
3, 20, 60, 204, 5040, 420, 660, 2040
Offset: 1
Examples
The solutions for the first 7 are 1, (3,4,5) 2, (20,21,29), (20,99,101) 3, (60,91,109), (60,221,229), (60,899,901) 4, (204,253,325), (204,1147,1165), (204,2597,2605), (204,10403,10405) 5, (5040,78319,78481), (5040,99161,99289), (5040,129551,129649), (5040,253991,254041), (5040,6350399,6350401) 6, (420,851,949), (420,1189,1261), (420,1739,1789), (420,4891,4909), (420,11021,11029), (420,44099,44101) 7, (660,779,1021), (660,989,1189), (660,2989,3061), (660,4331,4381), (660,12091,12109), (660,27221,27229), (660,108899,108901)
Crossrefs
Cf. A024359.
Programs
-
Mathematica
PyphagoreanAs[a_] := (q={}; k=0; If[a>=8,r=4,r=1]; Do[y=(a^2+b^2)^0.5; c=IntegerPart[y]; If[c==y, p=0; If[GCD[a,b,c]==1, AppendTo[q,a.b.c]; k++ ]], {b,a+1,a^2/r}]; PrependTo[q,k]; q); lst={}; x=0; Do[w=PyphagoreanAs[n][[1]]; If[w>x, Print[Date[],"A=",n,",w=",w]; AppendTo[lst,n]; x=w], {n,1000}]; lst solns[a_] := Module[{b, c, soln}, soln = Reduce[a^2 + b^2 == c^2 && a < b && c > 0 && GCD[a, b, c] == 1, {b, c}, Integers]; If[soln === False, 0, If[soln[[1, 1]] === b, 1, Length[soln]]]]; nn = 20; t = Table[0, {nn}]; Do[s = solns[n]; If[s > nn, Print[{s, n}], If[t[[s]] == 0, t[[s]] = n; Print[{s, n}]]], {n, 5040}]; t (* T. D. Noe, Feb 23 2012 *)
Extensions
a(5) from T. D. Noe, Feb 23 2012
Comments