cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A132461 Row squared sums of triangle of Lucas polynomials (A034807) for n>0: Sum_{k=0..floor(n/2)} A034807(n,k)^2, with a(0)=1.

Original entry on oeis.org

1, 1, 5, 10, 21, 51, 122, 295, 725, 1792, 4455, 11133, 27930, 70305, 177483, 449160, 1139157, 2894625, 7367720, 18781387, 47941271, 122524216, 313484385, 802877055, 2058184346, 5280670051, 13559216117, 34841384560, 89587774395
Offset: 0

Views

Author

Paul D. Hanna, Aug 21 2007

Keywords

Comments

Also equals row squared sums of triangle A132460 and so equals the sum of the initial floor(n/2)+1 squared terms of 1/C(x)^n where C(x) is the g.f. of the Catalan numbers (A000108).

Crossrefs

Cf. A034807 (Lucas polynomials); A093128, A132460, A132459; A000108 (Catalan).

Programs

  • Mathematica
    Flatten[{1,Table[Sum[(Binomial[n-k,k] + Binomial[n-k-1,k-1])^2,{k,0,Floor[n/2]}],{n,1,20}]}] (* Vaclav Kotesovec, Feb 28 2014 *)
  • PARI
    {a(n)=sum(k=0,n\2,(binomial(n-k, k)+binomial(n-k-1, k-1))^2)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    /* squared sums of negative powers of Catalan series: */
    {a(n)=local(Catalan=2/(1+sqrt(1-4*x +x*O(x^n)))); sum(k=0,n\2,polcoeff(Catalan^-n,k)^2)}
    for(n=0,30,print1(a(n),", "))

Formula

a(n) = Sum_{k=0..floor(n/2)} ( C(n-k, k) + C(n-k-1, k-1) )^2.
Ignoring initial term, equals the logarithmic derivative of A093128, which gives the number of dissections of a polygon using strictly disjoint diagonals. - Paul D. Hanna, Nov 09 2013
From Vaclav Kotesovec, Feb 28 2014: (Start)
Recurrence (for n>=5): (n-3)*n*a(n) = (2*n^2 - 7*n + 4)*a(n-1) + (n-4)*n*a(n-2) + (2*n^2 - 9*n + 8)*a(n-3) - (n-4)*(n-1)*a(n-4).
G.f.: (2-x+2*x^2)/sqrt((x^2+x+1)*(x^2-3*x+1))-1.
a(n) ~ 5^(3/4) * ((3+sqrt(5))/2)^n / (2*sqrt(Pi*n)).
(End)