cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A132460 Irregular triangle read by rows of the initial floor(n/2) + 1 coefficients of 1/C(x)^n, where C(x) is the g.f. of the Catalan sequence (A000108).

Original entry on oeis.org

1, 1, 1, -2, 1, -3, 1, -4, 2, 1, -5, 5, 1, -6, 9, -2, 1, -7, 14, -7, 1, -8, 20, -16, 2, 1, -9, 27, -30, 9, 1, -10, 35, -50, 25, -2, 1, -11, 44, -77, 55, -11, 1, -12, 54, -112, 105, -36, 2, 1, -13, 65, -156, 182, -91, 13, 1, -14, 77, -210, 294, -196, 49, -2
Offset: 0

Views

Author

Paul D. Hanna, Aug 21 2007

Keywords

Comments

The length of row n is A008619(n).
Essentially equals a signed version of A034807, the triangle of Lucas polynomials. The initial n coefficients of 1/C(x)^n consist of row n followed by floor((n-1)/2) zeros for n > 0.
For the following formula for 1/C(x)^n see the W. Lang reference, proposition 1 on p. 411:
1/C(x)^n = (sqrt(x))^n*(S(n,1/sqrt(x)) - sqrt(x)*S(n-1,1/sqrt(x))*C(x)), n >= 0, with the Chebyshev polynomials S(n,x) with coefficients given in A049310. See also the coefficient array A115139 for P(n,x) = (sqrt(x)^(n-1))*S(n-1, 1/sqrt(x)). - Wolfdieter Lang, Sep 14 2013
This triangular array is composed of interleaved rows of reversed, A127677 (cf. A156308, A217476, A263916) and reversed, signed A111125. - Tom Copeland, Nov 07 2015
It seems that the n-th row lists the coefficients of the HOMFLYPT (HOMFLY) polynomial reduced to one variable for link family n, see Jablan's slide 38. - Andrey Zabolotskiy, Jan 16 2018
For n >= 1 row n gives the coefficients of the Girard-Waring formula for the sum of x1^n + x2^n in terms of the elementary symmetric functions e_1(x1,x2) = x1 + x2 and e_2(x1,x2) = x1*x2. This is an array using the partitions of n, in the reverse Abramowitz-Stegun order, with all partitions with parts larger than 2 eliminated. E.g., n = 4: x1^4 + x2^4 = 1*e1^4 - 4*e1^3*e2 + 2*e1*e2^2. See also A115131, row n = 4, with the mentioned partitions omitted. - Wolfdieter Lang, May 03 2019
Row n lists the coefficients of the n-th Faber polynomial for the replicable function given in A154272 with offset -1. - Ben Toomey, May 12 2020

Examples

			The irregular triangle T(n,k) begins:
n\k 0    1    2    3    4    5    6   7 ...
-------------------------------------------------
0:  1
1:  1
2:  1   -2
3:  1   -3
4:  1   -4    2
5:  1   -5    5
6:  1   -6    9   -2
7:  1   -7   14   -7
8:  1   -8   20  -16    2
9:  1   -9   27  -30    9
10: 1  -10   35  -50   25   -2
11: 1  -11   44  -77   55  -11
12: 1  -12   54 -112  105  -36    2
13: 1  -13   65 -156  182  -91   13
14: 1  -14   77 -210  294 -196   49  -2
... (reformatted - _Wolfdieter Lang_, May 03 2019)
		

Crossrefs

Cf. A000108, A008619, A034807 (Lucas polynomials), A111125, A115131 (Waring numbers), A127677, A132461 (row squared sums), A156308, A217476, A263916.

Programs

  • Mathematica
    T[0, 0] = 1; T[n_, k_] := (-1)^k (Binomial[n-k, k] + Binomial[n-k-1, k-1]);
    Table[T[n, k], {n, 0, 14}, {k, 0, n/2}] // Flatten (* Jean-François Alcover, Jun 04 2018 *)
  • PARI
    {T(n,k)=if(k>n\2,0,(-1)^k*(binomial(n-k, k)+binomial(n-k-1, k-1)))}

Formula

T(n,k) = (-1)^k*( C(n-k,k) + C(n-k-1,k-1) ) for n >= 0, 0 <= k <= floor(n/2).
T(0,0) = 1; T(n,k) = (-1)^k*n*binomial(n-k,k)/(n-k), k = 0..floor(n/2). - Wolfdieter Lang, May 03 2019

A093128 Number of dissections of a polygon using strictly disjoint diagonals.

Original entry on oeis.org

1, 1, 3, 6, 13, 29, 65, 148, 341, 793, 1860, 4395, 10452, 24999, 60097, 145130, 351916, 856502, 2091599, 5123437, 12585354, 30995031, 76516348, 189310421, 469335998, 1165790119, 2900870597, 7230320746, 18049387617, 45123390441, 112963369113, 283162526640, 710664478791, 1785645155847, 4491596869206
Offset: 0

Views

Author

David Callan, Mar 23 2004

Keywords

Comments

a(n) is the number of dissections of a regular (n+2)-gon using 0 or more strictly disjoint diagonals.

Examples

			a(3)=6 because there are 5 ways to insert a single diagonal into a pentagon plus the empty dissection.
		

Crossrefs

Row sums of A093127.

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( 1 + (1+x)*( 1 -2*x -x^3 - Sqrt((1 -3*x+ x^2)*(1-x)*(1-x^3)) )/(2*x^4) )); // G. C. Greubel, Dec 28 2019
    
  • Maple
    seq(coeff(series(1 + (1+x)*( 1 -2*x -x^3 - sqrt((1 -3*x+ x^2)*(1-x)*(1-x^3)) )/(2*x^4), x, n+2), x, n), n = 0..40); # G. C. Greubel, Dec 28 2019
  • Mathematica
    CoefficientList[Series[1 +(1+x)*(1-2*x-x^3 -Sqrt[(1-3*x+x^2)*(1-x)*(1-x^3)])/( 2*x^4), {x,0,40}], x] (* G. C. Greubel, Dec 28 2019 *)
  • PARI
    {A132461(n)=sum(k=0,n\2,(binomial(n-k, k)+binomial(n-k-1, k-1))^2)}
    {a(n)=polcoeff(exp(sum(m=1,n,A132461(m)*x^m/m)+x*O(x^n)),n)} \\ Paul D. Hanna, Nov 09 2013
    
  • Sage
    def A093128_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1 + (1+x)*( 1 -2*x -x^3 - sqrt((1 -3*x+ x^2)*(1-x)*(1-x^3)) )/(2*x^4) ).list()
    A093128_list(40) # G. C. Greubel, Dec 28 2019

Formula

G.f.: 1 + (1+x)*( 1 -2*x -x^3 - sqrt((1 -3*x+ x^2)*(1-x)*(1-x^3)) )/(2*x^4).
a(n) = A004148(n+2) - A004148(n) for n>=1.
Logarithmic derivative yields A132461. - Paul D. Hanna, Nov 09 2013
G.f.: exp( Sum_{n>=1} A132461(n)*x^n/n ), where A132461(n) = Sum_{k=0..[n/2]} (C(n-k,k) + C(n-k-1,k-1))^2. - Paul D. Hanna, Nov 09 2013

Extensions

Terms a(26) onward added by G. C. Greubel, Dec 28 2019

A171215 Row cubed sums of triangle of Lucas polynomials (A034807) for n>0: Sum_{k=0..[n/2]} A034807(n,k)^3.

Original entry on oeis.org

1, 9, 28, 73, 251, 954, 3431, 12617, 48142, 184509, 710755, 2768410, 10857575, 42779655, 169411778, 673898825, 2690398105, 10776264120, 43294049155, 174399508573, 704214759836, 2849828137869, 11555835845903, 46943852758298
Offset: 1

Views

Author

Paul D. Hanna, Dec 14 2009

Keywords

Examples

			L.g.f.: L(x) = x + 9*x^2/2 + 28*x^3/3 + 73*x^4/4 + 251*x^5/5 +...
exp(L(x)) = 1 + x + 5*x^2 + 14*x^3 + 40*x^4 + 126*x^5 + 408*x^6 +...+ A171185(n)*x^n +...
		

Crossrefs

Programs

  • Magma
    A034807cubed:=func< n | [(Binomial(n-k,k)+Binomial(n-k-1,k-1))^3: k in [0..Floor(n/2)]] >; [&+A034807cubed(n): n in [1..24]]; // Bruno Berselli, May 19 2011
  • Maxima
    makelist(sum((binomial(n-k,k)+binomial(n-k-1, k-1))^3, k, 0, floor(n/2)), n, 1, 24); /* Bruno Berselli, May 19 2011 */
    
  • PARI
    {a(n)=sum(k=0, n\2, (binomial(n-k, k)+binomial(n-k-1, k-1))^3)}
    

Formula

Equals the logarithmic derivative of A171185.

A132459 Sums of squared coefficients in the negative powers of the Catalan function: a(n) = Sum_{k=1..n+1} [x^(n-k+1)] 1/C(x^2)^k, where C(x) is the g.f. of A000108.

Original entry on oeis.org

1, 1, 2, 5, 11, 18, 30, 45, 101, 171, 483, 702, 2745, 3406, 21215, 23237, 202627, 205701, 2169260, 2138431, 24770064, 24197219, 294389605, 286927242, 3600713132, 3508785697, 45050653316, 43916201874, 574363373312
Offset: 0

Views

Author

Paul D. Hanna, Aug 21 2007

Keywords

Crossrefs

Cf. A132461; A000108 (Catalan).

Programs

  • PARI
    {a(n)=local(Catalan=2/(1+sqrt(1-4*x^2 +x*O(x^n)))); sum(k=1,n+1,polcoeff(Catalan^-k,n-k+1)^2)}
Showing 1-4 of 4 results.