cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A034807 Triangle T(n,k) of coefficients of Lucas (or Cardan) polynomials.

Original entry on oeis.org

2, 1, 1, 2, 1, 3, 1, 4, 2, 1, 5, 5, 1, 6, 9, 2, 1, 7, 14, 7, 1, 8, 20, 16, 2, 1, 9, 27, 30, 9, 1, 10, 35, 50, 25, 2, 1, 11, 44, 77, 55, 11, 1, 12, 54, 112, 105, 36, 2, 1, 13, 65, 156, 182, 91, 13, 1, 14, 77, 210, 294, 196, 49, 2, 1, 15, 90, 275, 450, 378, 140, 15, 1, 16, 104
Offset: 0

Views

Author

Keywords

Comments

These polynomials arise in the following setup. Suppose G and H are power series satisfying G + H = G*H = 1/x. Then G^n + H^n = (1/x^n)*L_n(-x).
Apart from signs, triangle of coefficients when 2*cos(nt) is expanded in terms of x = 2*cos(t). For example, 2*cos(2t) = x^2 - 2, 2*cos(3t) = x^3 - 3x and 2*cos(4t) = x^4 - 4x^2 + 2. - Anthony C Robin, Jun 02 2004
Triangle of coefficients of expansion of Z_{nk} in terms of Z_k.
Row n has 1 + floor(n/2) terms. - Emeric Deutsch, Dec 25 2004
T(n,k) = number of k-matchings of the cycle C_n (n > 1). Example: T(6,2)=9 because the 2-matchings of the hexagon with edges a, b, c, d, e, f are ac, ad, ae, bd, be, bf, ce, cf and df. - Emeric Deutsch, Dec 25 2004
An example for the first comment: G=c(x), H=1/(x*c(x)) with c(x) the o.g.f. Catalan numbers A000108: (x*c(x))^n + (1/c(x))^n = L(n,-x)= Sum_{k=0..floor(n/2)} T(n,k)*(-x)^k.
This triangle also supplies the absolute values of the coefficients in the multiplication formulas for the Lucas numbers A000032.
From L. Edson Jeffery, Mar 19 2011: (Start)
This sequence is related to rhombus substitution tilings. A signed version of it (see A132460), formed as a triangle with interlaced zeros extending each row to n terms, begins as
{2}
{1, 0}
{1, 0, -2}
{1, 0, -3, 0}
{1, 0, -4, 0, 2}
{1, 0, -5, 0, 5, 0}
....
For the n X n tridiagonal unit-primitive matrix G_(n,1) (n >= 2) (see the L. E. Jeffery link below), defined by
G_(n,1) =
(0 1 0 ... 0)
(1 0 1 0 ... 0)
(0 1 0 1 0 ... 0)
...
(0 ... 0 1 0 1)
(0 ... 0 2 0),
Row n (i.e., {T(n,k)}, k=0..n) of the signed table gives the coefficients of its characteristic function: c_n(x) = Sum_{k=0..n} T(n,k)*x^(n-k) = 0. For example, let n=3. Then
G_(3,1) =
(0 1 0)
(1 0 1)
(0 2 0),
and row 3 of the table is {1,0,-3,0}. Hence c_3(x) = x^3 - 3*x = 0. G_(n,1) has n distinct eigenvalues (the solutions of c_n(x) = 0), given by w_j = 2*cos((2*j-1)*Pi/(2*n)), j=1..n. (End)
For n > 0, T(n,k) is the number of k-subsets of {1,2,...,n} which contain neither consecutive integers nor both 1 and n. Equivalently, T(n,k) is the number of k-subsets without neighbors of a set of n points on a circle. - José H. Nieto S., Jan 17 2012
With the first column omitted, this gives A157000. - Philippe Deléham, Mar 17 2013
The number of necklaces of k black and n - k white beads with no adjacent black beads (Kaplansky 1943). Coefficients of the Dickson polynomials D(n,x,-a). - Peter Bala, Mar 09 2014
From Tom Copeland, Nov 07 2015: (Start)
This triangular array is composed of interleaved rows of reversed, unsigned A127677 (cf. A156308, A217476, A263916) and reversed A111125 (cf. A127672).
See also A113279 for another connection to symmetric and Faber polynomials.
The difference of consecutive rows gives the previous row shifted.
For relations among the characteristic polynomials of Cartan matrices of the Coxeter root groups, Chebyshev polynomials, cyclotomic polynomials, and the polynomials of this entry, see Damianou (p. 12, 20, and 21) and Damianou and Evripidou (p. 7). (End)
Diagonals are related to multiplicities of eigenvalues of the Laplacian on hyperspheres through A029635. - Tom Copeland, Jan 10 2016
For n>=3, also the independence and matching polynomials of the n-cycle graph C_n. See also A284966. - Eric W. Weisstein, Apr 06 2017
Apparently, with the rows aerated and then the 2s on the diagonal removed, this matrix becomes the reverse, or mirror, of unsigned A117179. See also A114525 - Tom Copeland, May 30 2017
Briggs's (1633) table with an additional column of 2s on the right can be used to generate this table. See p. 69 of the Newton reference. - Tom Copeland, Jun 03 2017
From Liam Solus, Aug 23 2018: (Start)
For n>3 and k>0, T(n,k) equals the number of Markov equivalence classes with skeleton the cycle on n nodes having exactly k immoralities. See Theorem 2.1 of the article by A. Radhakrishnan et al. below.
For n>2 odd and r = floor(n/2)-1, the n-th row is the coefficient vector of the Ehrhart h*-polynomial of the r-stable (n,2)-hypersimplex. See Theorem 4.14 in the article by B. Braun and L. Solus below.
(End)
Conjecture: If a(n) = H(a,b,c,d,n) is a second-order linear recurrence with constant coefficients defined as a(0) = a, a(1)= b, a(n) = c*a(n-1) + d*a(n-2) then a(m*n) = H(a, H(a,b,c,d,m), Sum_{k=0..floor(m/2)} T(m,k)*c^(m-2*k)*d^k, (-1)^(m+1)*d^m, n) (Wolfdieter Lang). - Gary Detlefs, Feb 06 2023
For the proof of the preceding conjecture see the Detlefs and Lang link. There also proofs for several properties of this table are found. - Wolfdieter Lang, Apr 25 2023
From Mohammed Yaseen, Nov 09 2024: (Start)
Let m - 1/m = x, then
m^2 + 1/m^2 = x^2 + 2,
m^3 - 1/m^3 = x^3 + 3*x,
m^4 + 1/m^4 = x^4 + 4*x^2 + 2,
m^5 - 1/m^5 = x^5 + 5*x^3 + 5*x,
m^6 + 1/m^6 = x^6 + 6*x^4 + 9*x^2 + 2,
m^7 - 1/m^7 = x^7 + 7*x^5 + 14*x^3 + 7*x, etc. (End)

Examples

			I have seen two versions of these polynomials: One version begins L_0 = 2, L_1 = 1, L_2 = 1 + 2*x, L_3 = 1 + 3*x, L_4 = 1 + 4*x + 2*x^2, L_5 = 1 + 5*x + 5*x^2, L_6 = 1 + 6*x + 9*x^2 + 2*x^3, L_7 = 1 + 7*x + 14*x^2 + 7*x^3, L_8 = 1 + 8*x + 20*x^2 + 16*x^3 + 2*x^4, L_9 = 1 + 9*x + 27*x^2 + 30*x^3 + 9*x^4, ...
The other version (probably the more official one) begins L_0(x) = 2, L_1(x) = x, L_2(x) = 2 + x^2, L_3(x) = 3*x + x^3, L_4(x) = 2 + 4*x^2 + x^4, L_5(x) = 5*x + 5*x^3 + x^5, L_6(x) = 2 + 9*x^2 + 6*x^4 + x^6, L_7(x) = 7*x + 14*x^3 + 7*x^5 + x^7, L_8(x) = 2 + 16*x^2 + 20*x^4 + 8*x^6 + x^8, L_9(x) = 9*x + 30*x^3 + 27*x^5 + 9*x^7 + x^9.
From _John Blythe Dobson_, Oct 11 2007: (Start)
Triangle begins:
  2;
  1;
  1,  2;
  1,  3;
  1,  4,  2;
  1,  5,  5;
  1,  6,  9,   2;
  1,  7, 14,   7;
  1,  8, 20,  16,   2;
  1,  9, 27,  30,   9;
  1, 10, 35,  50,  25,   2;
  1, 11, 44,  77,  55,  11;
  1, 12, 54, 112, 105,  36,   2;
  1, 13, 65, 156, 182,  91,  13;
  1, 14, 77, 210, 294, 196,  49,  2;
  1, 15, 90, 275, 450, 378, 140, 15;
(End)
From _Peter Bala_, Mar 20 2025: (Start)
Let S = x + y and M = -x*y. Then the triangle gives the coefficients when expressing the symmetric polynomial x^n + y^n as a polynomial in S and M. For example,
x^2 + y^2 = S^2 + 2*M; x^3 + y^3 = S^3 + 3*S*M; x^4 + y^4 = S^4 + 4*(S^2)*M + 2*M^2;
x^5 + y^5 = S^5 + 5*(S^3)*M + 5*S*M^2; x^6 + y^6 = S^6 + 6*(S^4)*M + 9*(S^2)*M^2 + 2*M^3. See Woko. In general x^n + y^n = 2*(-i)^n *(sqrt(M))^n * T(n, i*S/(2*sqrt(M))), where T(n, x) denotes the n-th Chebyshev polynomial of the first kind. (End)
		

References

  • A. Brousseau, Fibonacci and Related Number Theoretic Tables. Fibonacci Association, San Jose, CA, 1972, p. 148.
  • C. D. Godsil, Algebraic Combinatorics, Chapman and Hall, New York, 1993.
  • Thomas Koshy, Fibonacci and Lucas Numbers with Applications. New York, etc.: John Wiley & Sons, 2001. (Chapter 13, "Pascal-like Triangles," is devoted to the present triangle.)
  • The Royal Society Newton Tercentenary Celebrations, Cambridge Univ. Press, 1947.

Crossrefs

Programs

  • Maple
    T:= proc(n,k) if n=0 and k=0 then 2 elif k>floor(n/2) then 0 else n*binomial(n-k,k)/(n-k) fi end: for n from 0 to 15 do seq(T(n,k), k=0..floor(n/2)) od; # yields sequence in triangular form # Emeric Deutsch, Dec 25 2004
  • Mathematica
    t[0, 0] = 2; t[n_, k_] := Binomial[n-k, k] + Binomial[n-k-1, k-1]; Table[t[n, k], {n, 0, 16}, {k, 0, Floor[n/2]}] // Flatten (* Jean-François Alcover, Dec 30 2013 *)
    CoefficientList[Table[x^(n/2) LucasL[n, 1/Sqrt[x]], {n, 0, 15}], x] // Flatten (* Eric W. Weisstein, Apr 06 2017 *)
    Table[Select[Reverse[CoefficientList[LucasL[n, x], x]], 0 < # &], {n, 0, 16}] // Flatten (* Robert G. Wilson v, May 03 2017 *)
    CoefficientList[FunctionExpand @ Table[2 (-x)^(n/2) Cos[n ArcSec[2 Sqrt[-x]]], {n, 0, 15}], x] // Flatten (* Eric W. Weisstein, Apr 03 2018 *)
    CoefficientList[Table[2 (-x)^(n/2) ChebyshevT[n, 1/(2 Sqrt[-x])], {n, 0, 15}], x] // Flatten (* Eric W. Weisstein, Apr 03 2018 *)
  • PARI
    {T(n, k) = if( k<0 || 2*k>n, 0, binomial(n-k, k) + binomial(n-k-1, k-1) + (n==0))}; /* Michael Somos, Jul 15 2003 */

Formula

Row sums = A000032. T(2n, n-1) = A000290(n), T(2n+1, n-1) = A000330(n), T(2n, n-2) = A002415(n). T(n, k) = A029635(n-k, k), if n>0. - Michael Somos, Apr 02 1999
Lucas polynomial coefficients: 1, -n, n*(n-3)/2!, -n*(n-4)*(n-5)/3!, n*(n-5)*(n-6)*(n-7)/4!, - n*(n-6)*(n-7)*(n-8)*(n-9)/5!, ... - Herb Conn and Gary W. Adamson, May 28 2003
G.f.: (2-x)/(1-x-x^2*y). - Vladeta Jovovic, May 31 2003
T(n, k) = T(n-1, k) + T(n-2, k-1), n>1. T(n, 0) = 1, n>0. T(n, k) = binomial(n-k, k) + binomial(n-k-1, k-1) = n*binomial(n-k-1, k-1)/k, 0 <= 2*k <= n except T(0, 0) = 2. - Michael Somos, Apr 02 1999
T(n,k) = (n*(n-1-k)!)/(k!*(n-2*k)!), n>0, k>=0. - Alexander Elkins (alexander_elkins(AT)hotmail.com), Jun 09 2007
O.g.f.: 2-(2xt+1)xt/(-t+xt+(xt)^2). (Cf. A113279.) - Tom Copeland, Nov 07 2015
T(n,k) = A011973(n-1,k) + A011973(n-3,k-1) = A011973(n,k) - A011973(n-4,k-2) except for T(0,0)=T(2,1)=2. - Xiangyu Chen, Dec 24 2020
L_n(x) = ((x+sqrt(x^2+4))/2)^n + (-((x+sqrt(x^2+4))/2))^(-n). See metallic means. - William Krier, Sep 01 2023

Extensions

Improved description, more terms, etc., from Michael Somos

A115131 Waring numbers for power sums functions in terms of elementary symmetric functions; irregular triangle T(n,k), read by rows, for n >= 1 and 1 <= k <= A000041(n).

Original entry on oeis.org

1, -2, 1, 3, -3, 1, -4, 4, 2, -4, 1, 5, -5, -5, 5, 5, -5, 1, -6, 6, 6, 3, -6, -12, -2, 6, 9, -6, 1, 7, -7, -7, -7, 7, 14, 7, 7, -7, -21, -7, 7, 14, -7, 1, -8, 8, 8, 8, 4, -8, -16, -16, -8, -8, 8, 24, 12, 24, 2, -8, -32, -16, 8, 20, -8, 1, 9, -9, -9, -9, -9, 9, 18, 18, 9, 9, 18, 3, -9, -27, -27, -27, -27, -9, 9, 36, 18, 54, 9, -9, -45, -30, 9, 27, -9, 1
Offset: 1

Views

Author

Wolfdieter Lang, Jan 13 2006

Keywords

Comments

Examples

			First few rows of triangle T(n,k) are as follows (see the link for rows 1..10):
   1;
  -2,  1;
   3, -3,  1;
  -4,  4,  2, -4, 1;
   5, -5, -5,  5, 5, -5, 1;
  ...
n=4: N*t^{(N)}_4 = -4*(sigma_4)^1 + 4*(sigma_1)*(sigma_3) + 2*(sigma_2)^2 -4*(sigma_1)^2*(sigma_2) + 1*(sigma_1)^4.
  (For 2 <= N < 4, one puts sigma_{N+1} = 0 = ... = sigma_4 = 0.) This becomes Sum_{k = 1..N} (x_k)^4 if the sigma functions are written in terms of the variables x_1, x_2, ..., x_N. E.g., for N=2: 0 + 0 + 2*(x_1*x_2)^2 -4*(x_1 + x_2)^2*(x_1*x_2) + 1*(x_1 + x_2)^4 = (x_1)^4 + (x_2)^4.
		

References

  • P. A. MacMahon, Combinatory Analysis, 2 vols., Chelsea, NY, 1960, see p. 5 (with a_k -> sigma_k).

Crossrefs

Cf. A210258 (in another ordering of partitions), A132460 (N=2), A325477 (N=3),
A324602 (N=4).

Formula

T(n,k) = (n/m(n,k))*A111786(n,k) for the k-th partition of n with m(n,k) parts in the Abramowitz-Stegun order for n >= 1 and k = 1..p(n), where p(n) := A000041(n).
Explicitly: T(n,k) = (-1)^(n + m(n,k)) * n * (m(n,k) - 1)!/(Product_{j = 1..n} e(k,j)!), where m(n,k):= Sum_{j = 1..n} e(k,j), with [1^e(k, 1), 2^e(k,2), ..., n^e(k,n)] being the k-th partition of n in the mentioned order. For m(n,k), see A036043.

Extensions

Various sections edited by Petros Hadjicostas, Dec 14 2019

A355345 G.f.: Sum_{n=-oo..+oo} x^(n*(n+1)/2) * C(x)^(2*n-1), where C(x) = 1 + x*C(x)^2 is the g.f. of the Catalan numbers (A000108).

Original entry on oeis.org

2, -2, -5, 6, -7, 14, -6, -9, 27, -30, 10, -11, 44, -77, 55, -10, -13, 65, -156, 182, -91, 14, -15, 90, -275, 450, -378, 140, -14, -17, 119, -442, 935, -1122, 714, -204, 18, -19, 152, -665, 1729, -2717, 2508, -1254, 285, -18, -21, 189, -952, 2940, -5733, 7007, -5148, 2079, -385, 22, -23, 230, -1311, 4692, -10948, 16744, -16445, 9867, -3289, 506
Offset: 0

Views

Author

Paul D. Hanna, Jul 25 2022

Keywords

Examples

			G.f.: A(x) = 2 - 2*x - 5*x^2 + 6*x^3 - 7*x^4 + 14*x^5 - 6*x^6 - 9*x^7 + 27*x^8 - 30*x^9 + 10*x^10 - 11*x^11 + 44*x^12 - 77*x^13 + 55*x^14 - 10*x^15 - 13*x^16 + 65*x^17 - 156*x^18 + 182*x^19 - 91*x^20 + ...
such that
A(x) = ... + x^6/C(x)^9 + x^3/C(x)^7 + x/C(x)^5 + 1/C(x)^3 + 1/C(x) + x*C(x) + x^3*C(x)^3 + x^6*C(x)^5 + x^10*C(x)^7 + x^15*C(x)^9 + ... + x^(n*(n+1)/2) * C(x)^(2*n-1) + ...
also
A(x) = 1/C(x)^3 * (1 + C(x)^2)*(1 + x/C(x)^2)*(1-x) * (1 + x*C(x)^2)*(1 + x^2/C(x)^2)*(1-x^2) * (1 + x^2*C(x)^2)*(1 + x^3/C(x)^2)*(1-x^3) * (1 + x^3*C(x)^2)*(1 + x^4/C(x)^2)*(1-x^4) * ... * (1 + x^(n-1)*C(x)^2)*(1 + x^n/C(x)^2)*(1-x^n) * ...
where C(x) = 1 + x*C(x)^2 begins
C(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 + 429*x^7 + 1430*x^8 + ... + A000108(n)*x^n + ...
RELATED TABLE.
This sequence also forms the antidiagonals of the rectangular table given by:
n = 0: [  2,  -5,  14,   -30,    55,    -91,    140,    -204, ...];
n = 1: [ -2,  -7,  27,   -77,   182,   -378,    714,   -1254, ...];
n = 2: [  6,  -9,  44,  -156,   450,  -1122,   2508,   -5148, ...];
n = 3: [ -6, -11,  65,  -275,   935,  -2717,   7007,  -16445, ...];
n = 4: [ 10, -13,  90,  -442,  1729,  -5733,  16744,  -44200, ...];
n = 5: [-10, -15, 119,  -665,  2940, -10948,  35700, -104652, ...];
n = 6: [ 14, -17, 152,  -952,  4692, -19380,  69768, -224808, ...];
n = 7: [-14, -19, 189, -1311,  7125, -32319, 127281, -447051, ...];
n = 8: [ 18, -21, 230, -1750, 10395, -51359, 219604, -834900, ...];
...
in which row n has g.f.: (-1)^n*(2*n+1) + (1-x)/(1+x)^(2*n+4) for n >= 0.
Thus, the terms of this sequence obey the rule
a((n+k)*(n+k+1)/2 + k) = [x^k] ((-1)^n*(2*n+1) + (1-x)/(1+x)^(2*n+4)), for n >= 0, k = 0..n.
Equivalently,
a((n+k)*(n+k+1)/2 + k) = (-1)^k*(binomial(2*n+k+3,k) + binomial(2*n+k+2,k-1)), for n >= 0, k >= 1, with a(n*(2*n+1)) = 2*(2*n+1) and a((n+1)*(2*n+1)) = -2*(2*n+1) for n >= 0.
For example,
a((n+1)*(n+2)/2 + 1) = -(2*n+5) for n >= 0,
a((n+2)*(n+3)/2 + 2) = (n+2)*(2*n+7) for n >= 0,
a(n*(n+3)/2) = (-1)^n * (n+1)*(n+2)*(2*n+3)/6  for n >= 1,
a(2*n*(n+1)) = (-1)^n * (binomial(3*n+3,n) + binomial(3*n+2,n-1)) = (-1)^n * A355347(n), for n >= 1.
...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A,C=1/x*serreverse(x-x^2 +O(x^(n+2))),M=ceil(sqrt(2*n+9)));
    A = sum(m=-M,M, x^(m*(m+1)/2) * C^(2*m-1) ); polcoeff(A,n)}
    for(n=0,70,print1(a(n),", "))
    
  • PARI
    {a(n) = my(A,M=ceil(sqrt(2*n+1)));
    A = sum(m=0,M, sum(k=0,n-m*(m+1)/2, x^((m+k)*(m+k+1)/2 + k) * polcoeff( (-1)^m*(2*m+1) + (1-x)/(1+x +x^2*O(x^k))^(2*m+4) ,k) )); polcoeff(A,n)}
    for(n=0,70,print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n may be obtained from the following expressions; here, C(x) = 1 + x*C(x)^2 is the g.f. of the Catalan numbers (A000108).
(1) A(x) = Sum_{n=-oo..+oo} x^(n*(n+1)/2) * C(x)^(2*n-1).
(2) A(x) = Sum_{n>=0} x^(n*(n+1)/2) * (C(x)^(2*n-1) + 1/C(x)^(2*n+3)).
(3) A(x) = 1/C(x)^3 * Product_{n>=1} (1 + x^(n-1)*C(x)^2) * (1 + x^n/C(x)^2) * (1-x^n), by the Jacobi triple product identity.
(4) A(x) = 1/P(x)^3 + Sum_{n>=0} Sum_{k>=0} (-1)^k * (binomial(2*n+k+3,k) + binomial(2*n+k+2,k-1)) * x^((n+k)*(n+k+1)/2 + k), where P(x) = Product_{n>=1} 1/(1-x^n) is the partition function.
(5) a((n+k)*(n+k+1)/2 + k) = [x^k] (-1)^n*(2*n+1) + (1-x)/(1+x)^(2*n+4), for n >= 0, k >= 0.
(6) a((n+k)*(n+k+1)/2 + k) = (-1)^k*(binomial(2*n+k+3,k) + binomial(2*n+k+2,k-1)), for n >= 0, k >= 1.

A132461 Row squared sums of triangle of Lucas polynomials (A034807) for n>0: Sum_{k=0..floor(n/2)} A034807(n,k)^2, with a(0)=1.

Original entry on oeis.org

1, 1, 5, 10, 21, 51, 122, 295, 725, 1792, 4455, 11133, 27930, 70305, 177483, 449160, 1139157, 2894625, 7367720, 18781387, 47941271, 122524216, 313484385, 802877055, 2058184346, 5280670051, 13559216117, 34841384560, 89587774395
Offset: 0

Views

Author

Paul D. Hanna, Aug 21 2007

Keywords

Comments

Also equals row squared sums of triangle A132460 and so equals the sum of the initial floor(n/2)+1 squared terms of 1/C(x)^n where C(x) is the g.f. of the Catalan numbers (A000108).

Crossrefs

Cf. A034807 (Lucas polynomials); A093128, A132460, A132459; A000108 (Catalan).

Programs

  • Mathematica
    Flatten[{1,Table[Sum[(Binomial[n-k,k] + Binomial[n-k-1,k-1])^2,{k,0,Floor[n/2]}],{n,1,20}]}] (* Vaclav Kotesovec, Feb 28 2014 *)
  • PARI
    {a(n)=sum(k=0,n\2,(binomial(n-k, k)+binomial(n-k-1, k-1))^2)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    /* squared sums of negative powers of Catalan series: */
    {a(n)=local(Catalan=2/(1+sqrt(1-4*x +x*O(x^n)))); sum(k=0,n\2,polcoeff(Catalan^-n,k)^2)}
    for(n=0,30,print1(a(n),", "))

Formula

a(n) = Sum_{k=0..floor(n/2)} ( C(n-k, k) + C(n-k-1, k-1) )^2.
Ignoring initial term, equals the logarithmic derivative of A093128, which gives the number of dissections of a polygon using strictly disjoint diagonals. - Paul D. Hanna, Nov 09 2013
From Vaclav Kotesovec, Feb 28 2014: (Start)
Recurrence (for n>=5): (n-3)*n*a(n) = (2*n^2 - 7*n + 4)*a(n-1) + (n-4)*n*a(n-2) + (2*n^2 - 9*n + 8)*a(n-3) - (n-4)*(n-1)*a(n-4).
G.f.: (2-x+2*x^2)/sqrt((x^2+x+1)*(x^2-3*x+1))-1.
a(n) ~ 5^(3/4) * ((3+sqrt(5))/2)^n / (2*sqrt(Pi*n)).
(End)

A324602 Irregular triangle read by rows: T(n, k) gives the coefficients of the Girard-Waring formula for the sum of n-th power of four indeterminates in terms of their elementary symmetric functions (reverse Abramowitz-Stegun order of partitions).

Original entry on oeis.org

1, 1, -2, 1, -3, 3, 1, -4, 2, 4, -4, 1, -5, 5, 5, -5, -5, 1, -6, 9, -2, 6, -12, 3, -6, 6, 1, -7, 14, -7, 7, -21, 7, 7, -7, 14, -7, 1, -8, 20, -16, 2, 8, -32, 24, 12, -8, -8, 24, -8, -16, 4, 1, -9, 27, -30, 9, 9, -45, 54, -9, 18, -27, 3, -9, 36, -27, -27, 18, 9, 1, -10, 35, -50, 25, -2, 10, -60, 100, -40, 25, -60, 15, 10, -10, 50, -60, 10, -40, 60, -10, 15, -10
Offset: 1

Views

Author

Wolfdieter Lang, May 03 2019

Keywords

Comments

The length of row n is A001400(n), n >= 1.
The Girard-Waring formula for the power sum p(4,n) := Sum_{j=1..4} (x_j)^n in terms of the elementary symmetric functions e_j(x_1, x_2, x_3, x_4), for j = 1, 2, 3, 4, is given by Sum_{i1=0..floor(n/4)} Sum_{i2=0...floor((n-4*i1)/3)} Sum_{i3=0...floor((n-4*i1-3*i2)/2)} ((-1)^(i1 + i3))*n*(n-1-i3-2*i2-3*i1)!/(i1!*i2!*i3!*(n-2*i3-3*i2-4*i1)!)*e_1^(n-2*i3-3*i2-4*i1)*(e_2)^i3*(e_3)^i2*(e_4)^i1, n >= 1 (the arguments of e_j have been omitted). See the W. Lang reference, Theorem 1, case N = 4, with r -> n.
This is an array using the partitions of n, in the reverse Abramowitz-Stegun order, with all partitions with a part >= 5 eliminated. See row n of the array of Waring numbers A115131, read backwards, with these partitions omitted.

Examples

			The irregular triangle T(n, k) begins:
n\k 1   2  3  4   5   6  7  8   9  10  11  12  13   14   15  16  17 18 ...
-----------------------------------------------------------------------------
1:  1
2:  1  -2
3:  1  -3  3
4:  1  -4  2  4  -4
5:  1  -5  5  5  -5  -5
6:  1  -6  9  6  -2 -12 -6  3   6
7:  1  -7 14  7  -7 -21 -7  7   7  14  -7
8:  1  -8 20  8 -16 -32 -8  2  24  12  24  -8  -8  -16    4
9:  1  -9 27  9 -30 -45 -9  9  54  18  36  -9 -27  -27  -27   3  18  9
...
n = 10: 1 -10 35 10 -50 -60 -10 25 100 25 50 -2 -40 -60 -60 -40 15 10 10 60 15 -10 -10.
...
-----------------------------------------------------------------------------
Row n = 5: p(4,5) = x_1^5 + x_2^5 + x_3^5 + x_4^5 =  1*e_1^5  - 5* e_1^3*e_2  + 5*e_1*e_2^2 + 5*e_1^2*e_3 - 5*e_2*e_3 - 5*e_1*e_4,
  with e_1 = Sum_{j=1..4} x_j, e_2 = x1*(x_2 + x_3 + x_4) + x_2*(x_3 + x_4) + x_3*x_4, e_3 = x_1*x_2*x_3 + x_1*x_2*x_4 + x_2*x_3*x_4, e_4 = Product_{i=1..4} x_j.
		

Crossrefs

Cf. A001400, A115131, A132460 (N=2), A325477 (N=3).

Formula

T(n, k) is the k-th coefficient of the Waring number partition array A115131(n, m) (k there is replaced here by m), read backwards, omitting all partitions which have a part >= 5.

A135936 Irregular triangle read by rows: row n gives coefficients of Boubaker polynomial B_n(x) in order of decreasing exponents (another version).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 0, -2, 1, -1, -3, 1, -2, -3, 2, 1, -3, -2, 5, 1, -4, 0, 8, -2, 1, -5, 3, 10, -7, 1, -6, 7, 10, -15, 2, 1, -7, 12, 7, -25, 9, 1, -8, 18, 0, -35, 24, -2, 1, -9, 25, -12, -42, 49, -11, 1, -10, 33, -30, -42, 84, -35, 2, 1, -11, 42, -55, -30, 126, -84, 13, 1, -12, 52, -88, 0, 168, -168, 48, -2, 1, -13, 63, -130, 55, 198, -294
Offset: 0

Views

Author

N. J. A. Sloane, Mar 09 2008

Keywords

Comments

See A135929 and A138034 for further information.

Examples

			The Boubaker polynomials B_0(x), B_1(x), B_2(x), ... are:
  1
  x
  x^2    + 2
  x^3    + x
  x^4             - 2
  x^5    - x^3  - 3*x
  x^6  - 2*x^4  - 3*x^2    + 2
  x^7  - 3*x^5  - 2*x^3  + 5*x
  x^8  - 4*x^6           + 8*x^2    - 2
  x^9  - 5*x^7  + 3*x^5 + 10*x^3  - 7*x
  ...
		

Crossrefs

Cf. A138034.

Programs

  • Maple
    A135936 := proc(n,m) coeftayl( coeftayl( (1+3*t^2)/(1-x*t+t^2),t=0,n), x=0,m) ; end: for n from 0 to 25 do for m from n to 0 by -2 do printf("%d, ",A135936(n,m)) ; od; od; # R. J. Mathar, Mar 11 2008
  • Mathematica
    T[n_, m_] := SeriesCoefficient[SeriesCoefficient[
       (1+3*t^2)/(1-x*t+t^2), {t, 0, n}], {x, 0, m}];
    Table[T[n, m], {n, 0, 25}, {m, n, 0, -2}] // Flatten (* Jean-François Alcover, Mar 11 2023, after R. J. Mathar *)

Formula

Conjectures from Thomas Baruchel, Jun 03 2018: (Start)
T(n,m) = 4*A115139(n+1,m) - 3*A132460(n,m).
T(n,m) = (-1)^m * (binomial(n-m, m) - 3*binomial(n-m-1, m-1)). (End)

Extensions

More terms from R. J. Mathar, Mar 11 2008

A157000 Triangle T(n,k) = (n/k)*binomial(n-k-1, k-1) read by rows.

Original entry on oeis.org

2, 3, 4, 2, 5, 5, 6, 9, 2, 7, 14, 7, 8, 20, 16, 2, 9, 27, 30, 9, 10, 35, 50, 25, 2, 11, 44, 77, 55, 11, 12, 54, 112, 105, 36, 2, 13, 65, 156, 182, 91, 13, 14, 77, 210, 294, 196, 49, 2, 15, 90, 275, 450, 378, 140, 15, 16, 104, 352, 660, 672, 336, 64, 2, 17, 119, 442, 935, 1122, 714, 204, 17
Offset: 2

Views

Author

Roger L. Bagula, Feb 20 2009

Keywords

Comments

Row sums are A001610(n-1).
Triangle A034807 (coefficients of Lucas polynomials) with the first column omitted. - Philippe Deléham, Mar 17 2013
T(n,k) is the number of ways to select k knights from a round table of n knights, no two adjacent. - Bert Seghers, Mar 02 2014

Examples

			The table starts in row n=2, column k=1 as:
   2;
   3;
   4,  2;
   5,  5;
   6,  9,   2;
   7, 14,   7;
   8, 20,  16,   2;
   9, 27,  30,   9;
  10, 35,  50,  25,  2;
  11, 44,  77,  55, 11;
  12, 54, 112, 105, 36, 2;
		

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, pp. 199

Crossrefs

Programs

  • Magma
    [[n*Binomial(n-k-1,k-1)/k: k in [1..Floor(n/2)]]: n in [2..20]]; // G. C. Greubel, Apr 25 2019
    
  • Mathematica
    Table[(n/k)*Binomial[n-k-1, k-1], {n,2,20}, {k,1,Floor[n/2]}]//Flatten (* modified by G. C. Greubel, Apr 25 2019 *)
  • PARI
    a(n,k)=n*binomial(n-k-1,k-1)/k; \\ Charles R Greathouse IV, Jul 10 2011
    
  • Sage
    [[n*binomial(n-k-1,k-1)/k for k in (1..floor(n/2))] for n in (2..20)] # G. C. Greubel, Apr 25 2019

Formula

T(n,k) = binomial(n-k,k) + binomial(n-k-1,k-1). - Bert Seghers, Mar 02 2014

Extensions

Offset 2, keyword:tabf, more terms by the Assoc. Eds. of the OEIS, Nov 01 2010

A213234 Triangle read by rows: coefficients of auxiliary Rudin-Shapiro polynomials A_{ns}(omega) written in descending powers of x.

Original entry on oeis.org

2, 1, 1, -2, 1, -3, 1, -4, 2, 1, -5, 5, 1, -6, 9, -2, 1, -7, 14, -7, 1, -8, 20, -16, 2, 1, -9, 27, -30, 9, 1, -10, 35, -50, 25, -2, 1, -11, 44, -77, 55, -11, 1, -12, 54, -112, 105, -36, 2, 1, -13, 65, -156, 182, -91, 13, 1, -14, 77, -210, 294, -196, 49, -2, 1, -15, 90, -275, 450, -378, 140, -15
Offset: 0

Views

Author

N. J. A. Sloane, Jun 06 2012

Keywords

Comments

From Mohammed Yaseen, Nov 09 2024: (Start)
Let m + 1/m = x, then
m^2 + 1/m^2 = x^2 - 2,
m^3 + 1/m^3 = x^3 - 3*x,
m^4 + 1/m^4 = x^4 - 4*x^2 + 2,
m^5 + 1/m^5 = x^5 - 5*x^3 + 5*x,
m^6 + 1/m^6 = x^6 - 6*x^4 + 9*x^2 - 2,
m^7 + 1/m^7 = x^7 - 7*x^5 + 14*x^3 - 7*x, etc. (End)

Examples

			The first few polynomials are:
  2
  x
  x^2-2
  x^3-3*x
  x^4+2-4*x^2
  x^5-5*x^3+5*x
  x^6-2-6*x^4+9*x^2
  x^7-7*x^5+14*x^3-7*x
  x^8+2-8*x^6+20*x^4-16*x^2
  x^9-9*x^7+27*x^5-30*x^3+9*x
  x^10-2-10*x^8+35*x^6-50*x^4+25*x^2
  x^11-11*x^9+44*x^7-77*x^5+55*x^3-11*x
  x^12+2-12*x^10+54*x^8-112*x^6+105*x^4-36*x^2
  ...
Triangle begins:
  [2]
  [1]
  [1, -2]
  [1, -3]
  [1, -4, 2]
  [1, -5, 5]
  [1, -6, 9, -2]
  [1, -7, 14, -7]
  [1, -8, 20, -16, 2]
  [1, -9, 27, -30, 9]
  [1, -10, 35, -50, 25, -2]
  [1, -11, 44, -77, 55, -11]
  [1, -12, 54, -112, 105, -36, 2]
  ...
		

Crossrefs

Programs

  • Maple
    #The program is valid for n>=1:
    f:=n->x^n+add((-1)^i*(n/i)*binomial(n-i-1,i-1)*x^(n-2*i), i=1..floor(n/2));
    g:=n->series(x^n*subs(x=1/x,f(n)),x,n+1);
    h:=n->seriestolist(series(subs(x=sqrt(x),g(n)),x,n+1));
    for n from 0 to 15 do lprint(h(n)); od:
  • Mathematica
    Block[{t}, t[0, 0] = 2; t[n_, k_] := Binomial[n - k, k] + Binomial[n - k - 1, k - 1]; Table[(-1)^k*t[n, k], {n, 0, 15}, {k, 0, Floor[n/2]}] ] // Flatten (* Michael De Vlieger, Jun 26 2020, after Jean-François Alcover at A034807 *)

Formula

T(n,k) = (-1)^k*A034807(n,k). - Philippe Deléham , Nov 10 2013

A325477 Irregular triangle read by rows: T(n, k) gives the coefficients of the Girard-Waring formula for the sum of n-th power of three indeterminates in terms of their elementary symmetric functions.

Original entry on oeis.org

1, 1, -2, 1, -3, 3, 1, -4, 2, 4, 1, -5, 5, 5, -5, 1, 1, -6, 9, 6, -2, -12, 3, 1, -7, 14, 7, -7, -21, 7, 7, 1, -8, 20, 8, -16, -32, 2, 24, 12, -8, 1, -9, 27, 9, -30, -45, 9, 54, 18, -9, -27, 3, 1, -10, 35, 10, -50, -60, 25, 100, 25, -2, -40, -60, 15, 10
Offset: 1

Views

Author

Wolfdieter Lang, May 03 2019

Keywords

Comments

The length of row n is A001399(n), n >= 1.
The Girard-Waring formula for the power sum p(3,n) = x1^n + x2^2 + x3^n in terms of the elementary symmetric functions e_j(x1, x2, x3), for j=1, 2, 3, is given by Sum_{i=0..floor(n/3)} Sum_{j=0...floor((n-3*i)/2)} ((-1)^j)*n*(n - j - 2*i - 1)!/(i!*j!*(n - 2*j -3*i)!)*e_1^(n-3*i-2*j)*(e_2)^j*(e_3)^i, n >= 1 (the arguments of e_j have been omitted). See the W. Lang reference, Theorem 1, case N = 3, with r -> n.
This is an array using the partitions of n, in the reverse Abramowitz-Stegun order, with all partitions which have a part larger than 3 elininated. See row n of the array of Waring numbers A115131 read backwards, with these partitions omitted, and numerated with k from 1, 2, ..., A001399(n).

Examples

			The irregular triangle T(n, k) begins:
n\k  1   2  3   4   5   6  7   8   9  10  11  12  13  14 ...
-------------------------------------------------------------
1:   1
2:   1  -2
3:   1  -3  3
4:   1  -4  2   4
5:   1  -5  5   5  -5
6:   1  -6  9   6  -2 -12  3
7:   1  -7 14   7  -7 -21  7   7
8:   1  -8 20   8 -16 -32  2  24  12  -8
9:   1  -9 27   9 -30 -45  9  54  18  -9 -27   3
10:  1 -10 35  10 -50 -60 25 100  25  -2 -40 -60  15  10
...
n = 4: x1^4 + x2^4 + x3^4 = (e_1)^4 - 4*(e_1)^2*e_2 + 2*(e_2)^2 + 4*e_1*e_3, with e_1 = x1 + x2 + x3, e_2 = x1*x2 + x1*x3 + x2*x^3 and e_3 = x1*x2*x3.
		

Crossrefs

Cf. A001399, A115131, A132460 (case N=2), A324602 (N=4).

Formula

T(n, k) is the k-th coefficient of the Waring number partition array A115131(n, m) (k there is replaced here by m), read backwards, omitting all partitions which have a part >= 3.

A307449 Irregular triangle read by rows: T(n, k) gives the coefficients of the Girard-Waring formula for the sum of n-th power of five indeterminates in terms of their elementary symmetric functions (reverse Abramowitz-Stegun order of partitions).

Original entry on oeis.org

1, 1, -2, 1, -3, 3, 1, -4, 2, 4, -4, 1, -5, 5, 5, -5, -5, 5, 1, -6, 9, 6, -2, -12, -6, 3, 6, 6, 1, -7, 14, 7, -7, -21, -7, 7, 7, 14, 7, -7, -7, 1, -8, 20, 8, -16, -32, -8, 2, 24, 12, 24, 8, -8, -8, -16, -16, 4, 8, 1, -9, 27, 9, -30, -45, -9, 9, 54, 18, 36, 9, -9, -27, -27, -27, -27, 3, 18, 9, 9, 18, -9, 1, -10, 35, 10, -50, -60, -10, 25, 100, 25, 50, 10, -2, -40, -60, -60, -40, -40, 15, 10, 10, 60, 30, 15, 30, -10, -10, -20, -20, 5
Offset: 1

Views

Author

Wolfdieter Lang, May 14 2019

Keywords

Comments

The length of row n is A001401(n), n >= 1.
The Girard-Waring formula for the power sum p(5,n) = Sum_{j=1..5} (x_j)^n in terms of the elementary symmetric functions e_j(x_1, x_2, x_3, x_4), for j = 1, 2 ,..., 5 is given in the W. Lang reference, Theorem 1, in an explicitly nested four sums version. See also the summary link, for N = 5 (there sigma_j^{(N)} -> e_j here).
In this array the partitions of n, with all partitions with a part >= 6 omitted, are used. Here the partitions appear in the reverse Abramowitz-Stegun order. See row n of the array of Waring numbers A115131, read backwards, with the entries corresponding to these omitted partitions.

Examples

			The irregular triangle T(n, k) begins:
n\k 1   2  3  4   5   6  7 8  9 10 11 12 13  14  15  16  17 18 19 20 21 22 23
-----------------------------------------------------------------------------
1:  1
2:  1  -2
3:  1  -3  3
4:  1  -4  2  4  -4
5:  1  -5  5  5  -5  -5  5
6:  1  -6  9  6  -2 -12 -6 3  6  6
7:  1  -7 14  7  -7 -21 -7 7  7 14  7 -7 -7
8:  1  -8 20  8 -16 -32 -8 2 24 12 24  8 -8  -8 -16 -16   4  8
9:  1  -9 27  9 -30 -45 -9 9 54 18 36  9 -9 -27 -27 -27 -27  3 18  9  9 18 -9
.
.
.
n = 10: 1 -10 35 10 -50 -60 -10 25 100 25 50 10 -2 -40 -60 -60 -40 -40 15 10 10 60 30 15 30 -10 -10 -20 -20 5.
...
------------------------------------------------------------------------------
Row n = 6: x_1^6 + x_2^6 + x_3^6 + x_4^6 + x_5^6 =  1*e_1^6  - 6*e_1^4*e_2 + 9*e_1^2*e_2^2 + 6*e_1^3*e_3 - 2*e_2^3 - 12*e_1*e_2*e_3 - 6*e_1^2*e_4 + 3*e_3^2 + 6*e_2*e_4 + 6*e_1*e_5,  with e_1 = Sum_{j=1..5} x_j, e_2 = x1*(x_2 + x_3 + x_4 + x_5) + x_2*(x_3 + x_4 + x_5) + x_3*(x_4 + x_5) + x_4*x_5, e_3 = x_1*x_2*x_3 + x_1*x_2*x_4 +  x_1*x_2*x_5 +  x_2*x_3*x_4 + x_2*x_3*x_5 + x_2*x_4*x_5 + x_3*x_4*x_5, e_4 =  x_1*x_2*x_3*x_4 + x_1*x_2*x_3*x_5 + x_1*x_2*x_4*x_5 + x_1*x_3*x_4*x_5 + x_2*x_3*x_4*x_5, e_5 = Product_{i=1..5} x_j.
		

Crossrefs

Cf. A001401, A115131, A132460 (N=2), A325477 (N=3), A324602 (N=4).

Formula

T(n, k) is the k-th coefficient of the Waring number partition array A115131(n, m) (k there is replaced here by m), read backwards, omitting all partitions which have a part >= 6.
Showing 1-10 of 10 results.