cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A132461 Row squared sums of triangle of Lucas polynomials (A034807) for n>0: Sum_{k=0..floor(n/2)} A034807(n,k)^2, with a(0)=1.

Original entry on oeis.org

1, 1, 5, 10, 21, 51, 122, 295, 725, 1792, 4455, 11133, 27930, 70305, 177483, 449160, 1139157, 2894625, 7367720, 18781387, 47941271, 122524216, 313484385, 802877055, 2058184346, 5280670051, 13559216117, 34841384560, 89587774395
Offset: 0

Views

Author

Paul D. Hanna, Aug 21 2007

Keywords

Comments

Also equals row squared sums of triangle A132460 and so equals the sum of the initial floor(n/2)+1 squared terms of 1/C(x)^n where C(x) is the g.f. of the Catalan numbers (A000108).

Crossrefs

Cf. A034807 (Lucas polynomials); A093128, A132460, A132459; A000108 (Catalan).

Programs

  • Mathematica
    Flatten[{1,Table[Sum[(Binomial[n-k,k] + Binomial[n-k-1,k-1])^2,{k,0,Floor[n/2]}],{n,1,20}]}] (* Vaclav Kotesovec, Feb 28 2014 *)
  • PARI
    {a(n)=sum(k=0,n\2,(binomial(n-k, k)+binomial(n-k-1, k-1))^2)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    /* squared sums of negative powers of Catalan series: */
    {a(n)=local(Catalan=2/(1+sqrt(1-4*x +x*O(x^n)))); sum(k=0,n\2,polcoeff(Catalan^-n,k)^2)}
    for(n=0,30,print1(a(n),", "))

Formula

a(n) = Sum_{k=0..floor(n/2)} ( C(n-k, k) + C(n-k-1, k-1) )^2.
Ignoring initial term, equals the logarithmic derivative of A093128, which gives the number of dissections of a polygon using strictly disjoint diagonals. - Paul D. Hanna, Nov 09 2013
From Vaclav Kotesovec, Feb 28 2014: (Start)
Recurrence (for n>=5): (n-3)*n*a(n) = (2*n^2 - 7*n + 4)*a(n-1) + (n-4)*n*a(n-2) + (2*n^2 - 9*n + 8)*a(n-3) - (n-4)*(n-1)*a(n-4).
G.f.: (2-x+2*x^2)/sqrt((x^2+x+1)*(x^2-3*x+1))-1.
a(n) ~ 5^(3/4) * ((3+sqrt(5))/2)^n / (2*sqrt(Pi*n)).
(End)

A171185 G.f.: exp( Sum_{n>=1} (x^n/n)*[Sum_{k=0..[n/2]} A034807(n,k)^3] ), where A034807 is a triangle of Lucas polynomials.

Original entry on oeis.org

1, 1, 5, 14, 40, 126, 408, 1332, 4473, 15377, 53627, 189724, 680475, 2467975, 9038578, 33399571, 124400702, 466619283, 1761467038, 6688059913, 25527326897, 97901917060, 377123873505, 1458573962761, 5662223702216, 22056563938599
Offset: 0

Views

Author

Paul D. Hanna, Dec 14 2009

Keywords

Examples

			G.f.: A(x) = 1 + x + 5*x^2 + 14*x^3 + 40*x^4 + 126*x^5 + 408*x^6 +...
log(A(x)) = x + 9*x^2/2 + 28*x^3/3 + 73*x^4/4 + 251*x^5/5 + 954*x^6/6 +...+ A171215(n)*x^n/n +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n,(x^m/m)*sum(k=0, m\2, (binomial(m-k, k)+binomial(m-k-1, k-1))^3))+x*O(x^n)),n)}

A368376 Arises from enumeration of a certain class of zig-zag knight's paths on the square grid.

Original entry on oeis.org

0, 1, 0, 1, 0, 3, 1, 6, 3, 13, 9, 29, 25, 65, 66, 148, 171, 341, 437, 793, 1107, 1860, 2790, 4395, 7009, 10452, 17574, 24999, 44019, 60097, 110210, 145130, 275925, 351916, 690993, 856502, 1731224, 2091599, 4339980, 5123437, 10887192, 12585354, 27331465
Offset: 0

Views

Author

N. J. A. Sloane, Feb 18 2024

Keywords

Comments

It would be nice to have a more precise definition.

Crossrefs

A093128 is a bisection.

Programs

  • Mathematica
    r = (1 - z^4 - z^2 - Sqrt[z^8 - 2z^6 - z^4 - 2z^2 + 1]) / (2z^3);
    gf = r (u^2 z + u z^2 + 1) / (z^3 (1 - r u));
    Table[SeriesCoefficient[gf,{u,0,2},{z,0,n}], {n,0,33}] (* Andrei Zabolotskii, Jul 25 2025 *)

Formula

G.f.: (x + x^2 * R(x) + R(x)^2) * R(x) / x^3, where R(x) = x * (A(x^2) - 1) and A(x) is the g.f. of A004148. - Andrei Zabolotskii, Jul 25 2025

Extensions

Terms a(14) and beyond from Andrei Zabolotskii, Jul 25 2025

A387202 a(n) is the number of dissections of a (4*n+2)-gon into hexagons using strictly disjoint diagonals.

Original entry on oeis.org

1, 5, 21, 87, 363, 1534, 6570, 28492, 124944, 553301, 2471373, 11122275, 50389695, 229643895, 1052093655, 4842863465, 22386911925, 103885321615, 483759492255, 2259888333445, 10587902977185, 49738841822400, 234235771140876, 1105609645231322, 5229610939919718
Offset: 1

Views

Author

Muhammed Sefa Saydam, Aug 21 2025

Keywords

Crossrefs

Programs

  • PARI
    seq(n)={my(g=(1 - 3*x - sqrt(1 - 6*x + 5*x^2 + O(x*x^n)))/(2*x)); Vec((1 + 4*g + 3*g^2)*x + g^2)} \\ Andrew Howroyd, Aug 21 2025

Formula

G.f.: x*(1 + 4*B(x) + 3*B(x)^2) + B(x)^2, where 1 + B(x) is the g.f. of A002212. - Andrew Howroyd, Aug 21 2025
D-finite with recurrence -(n+2)*(2*n-3)*a(n) +3*(2*n+1)*(2*n-3)*a(n-1) -5*(2*n+1)*(n-3)*a(n-2)=0. - R. J. Mathar, Aug 28 2025

A387224 Number of dissections of a convex n-gon by strictly disjoint diagonals so as to create no triangles.

Original entry on oeis.org

0, 1, 1, 4, 8, 17, 37, 81, 177, 389, 859, 1905, 4241, 9477, 21251, 47806, 107864, 244045, 553575, 1258687, 2868285, 6549757, 14985361, 34347444, 78860152, 181347591, 417653187, 963234195, 2224464087, 5143567237, 11907471643, 27597112946, 64028244032, 148703128913, 345690623119
Offset: 3

Views

Author

Muhammed Sefa Saydam, Aug 22 2025

Keywords

Comments

Strictly disjoint diagonals means that the diagonals are non-crossing and may not share endpoints.

Examples

			         n=4                         n=5                            n=6
    (1)       (2)                    (1)              (1) (2)     (1) (2)     (1) (2)
                                  (5)   (2)         (6)  \  (3) (6)-----(3) (6)  /  (3)
    (4)       (3)                  (4) (3)            (5) (4)     (5) (4)     (5) (4)
 Diagonal cannot be drawn   Diagonal cannot be drawn
    Number of cases = 1       Number of cases = 1         Number of cases = 3
		

Crossrefs

Programs

  • PARI
    seq(n) = my(g=2/(1 - x + x^2 + x^3 + sqrt((1-x^4)*(1-2*x-x^2) + O(x*x^n)))); Vec((1 - x^2 - 2*x^3)*g - 1 - x + 2*x^3 + 2*x^4, -n+2) \\ Andrew Howroyd, Aug 28 2025

Formula

a(n) = A004149(n) - A004149(n-2) - 2*A004149(n-3) for n >= 5.
G.f.: (1 - x^2 - 2*x^3)*B(x) - 1 - x + 2*x^3 + 2*x^4, where B(x) is the g.f. of A004149. - Andrew Howroyd, Aug 28 2025

A387267 Number of dissections of a convex n-gon into quadrilaterals and pentagons by strictly disjoint diagonals.

Original entry on oeis.org

0, 1, 1, 3, 7, 8, 19, 31, 47, 87, 135, 219, 371, 579, 947, 1535, 2423, 3919, 6239, 9891, 15803, 24987, 39563, 62663, 98751, 155815, 245431, 385771, 606467, 951795, 1492323, 2338703, 3660551, 5725951, 8950543, 13978931, 21820235, 34037067, 53059643, 82670167
Offset: 3

Views

Author

Muhammed Sefa Saydam, Aug 24 2025

Keywords

Comments

Strictly disjoint diagonals means that the diagonals are non-crossing and may not share endpoints.

Crossrefs

Formula

a(n) = T(n-3) + Sum_{i=1..n-8} T(i)*( T(n-i-4) + T(n-i-7) ) + Sum_{i=n-7..n-5} T(i)*( 1 + T(n-i-4) ) for n >= 9 and T(n) = A159284(n).
Showing 1-6 of 6 results.