cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A132641 Number of partitions of n, p(n), raised to power p(n).

Original entry on oeis.org

1, 1, 4, 27, 3125, 823543, 285311670611, 437893890380859375, 341427877364219557396646723584, 205891132094649000000000000000000000000000000, 150130937545296572356771972164254457814047970568738777235893533016064
Offset: 0

Views

Author

Omar E. Pol, Aug 24 2007

Keywords

Comments

a(n) is also the number of endofunctions on the partitions of n. - Max Sills, Feb 07 2012

Examples

			a(5) = 823543 because p(5) = 7 and we can write 823543 = 7^7 or 823543 = 7*7*7*7*7*7*7.
		

Crossrefs

Programs

  • Maple
    a:= n-> (p-> p^p)(combinat[numbpart](n)):
    seq(a(n), n=0..11);  # Alois P. Heinz, Nov 04 2024
  • Mathematica
    Table[ PartitionsP@n ^ PartitionsP@n, {n, 10}] (* Robert G. Wilson v, Aug 28 2007 *)

Formula

a(n) = p(n)^p(n).
a(n) = A000312(A000041(n)). - Alois P. Heinz, Nov 04 2024

Extensions

More terms from Robert G. Wilson v, Aug 28 2007
a(0)=1 prepended by Alois P. Heinz, Nov 04 2024