cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A370383 Number of permutations of [n] having no substring [k,k+1,k+2,k+3,k+4].

Original entry on oeis.org

1, 1, 2, 6, 24, 119, 717, 5026, 40242, 362376, 3625081, 39885851, 478714416, 6224078292, 87145277160, 1307271652917, 20917481850667, 355612235468396, 6401234296266540, 121626707638142280, 2432586885636105251, 51085230669413519349, 1123891538655073251190
Offset: 0

Views

Author

Seiichi Manyama, Feb 17 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, k!*((x-x^5)/(1-x^5))^k))

Formula

G.f.: Sum_{k>=0} k! * ( (x-x^5)/(1-x^5) )^k.
a(n) = Sum_{k=0..4} A184182(n,k). - Alois P. Heinz, Feb 17 2024

A370384 Number of permutations of [n] having no substring [k,k+1,k+2,k+3,k+4,k+5].

Original entry on oeis.org

1, 1, 2, 6, 24, 120, 719, 5037, 40306, 362802, 3628296, 39913080, 478970641, 6226733531, 87175347936, 1307641346772, 20922387099240, 355682119243320, 6402298503373917, 121643960874649867, 2432883613692550316, 51090627024035616300, 1123995015882951892680
Offset: 0

Views

Author

Seiichi Manyama, Feb 17 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, k!*((x-x^6)/(1-x^6))^k))

Formula

G.f.: Sum_{k>=0} k! * ( (x-x^6)/(1-x^6) )^k.
a(n) = Sum_{k=0..5} A184182(n,k). - Alois P. Heinz, Feb 17 2024

A370392 Number of permutations of [n] whose longest block is of length 3. A block of a permutation is a maximal sequence of consecutive integers which appear in consecutive positions.

Original entry on oeis.org

0, 0, 0, 1, 2, 11, 63, 415, 3121, 26402, 248429, 2575936, 29198926, 359351878, 4773277246, 68078349863, 1037820312090, 16842621113247, 289946286959875, 5277826030457339, 101291053229162471, 2044252472193005928, 43283094591188747415, 959369370636209414390
Offset: 0

Views

Author

Seiichi Manyama, Feb 17 2024

Keywords

Crossrefs

Column k=3 of A184182.

Programs

  • PARI
    my(N=30, x='x+O('x^N)); concat([0, 0, 0], Vec(sum(k=0, N, k!*x^k*(((1-x^3)/(1-x^4))^k-((1-x^2)/(1-x^3))^k))))

Formula

a(n) = A132647(n) - A002628(n).
G.f.: Sum_{k>=0} k! * x^k * ( ((1-x^3)/(1-x^4))^k - ((1-x^2)/(1-x^3))^k ).
Showing 1-3 of 3 results.