cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A220852 Numerators of the fraction (30*n+7) * binomial(2*n,n)^2 * 2F1([1/2 - n/2, -n/2], [1], 64)/(-256)^n, where 2F1 is the hypergeometric function.

Original entry on oeis.org

7, -37, 19899, -235225, 268989175, -4985687133, 1052143756587, -25075299330081, 71491170131441775, -1979286926244381325, 319756423353994489291, -9700423363591011143001, 5919065321069316557189503, -189993537046726536185033125
Offset: 0

Views

Author

Keywords

Comments

The Gaussian hypergeometric function 2F1() is a polynomial in n because at least one of the "numerators" is a negative integer. 2F1( [(1-n)/2,-n/2], [1], 64) = A098441(n). - R. J. Mathar, Jan 09 2013

Crossrefs

Programs

  • Maple
    A220852 := proc(n)
        hypergeom([1/2-n/2,-n/2],[1],64) ;
        simplify(%) ;
        (30*n+7)*binomial(2*n,n)^2*%/(-256)^n ;
        numer(%) ;
    end proc: # R. J. Mathar, Jan 09 2013
  • Mathematica
    Numerator[Table[(30*n + 7)*Binomial[2*n, n]^2* Hypergeometric2F1[(1 - n)/2, -n/2, 1, 64]/(-256)^n, {n, 0, 50}]] (* G. C. Greubel, Feb 20 2017 *)

Formula

Sum_{n>=0} a(n)/A220853(n) = 24/Pi.
More directly, Sum_{k>=0} (30*k+7) * binomial(2k,k)^2 * (Hypergeometric2F1[1/2 - k/2, -k/2, 1,64])/(-256)^k = 24/Pi.
Another version of this identity is Sum_{k>=0} (30*k+7) * binomial(2k,k)^2 * (Sum_{m=0..k/2} binomial(k-m,m) * binomial(k,m) * 16^m)/(-256)^k.

Extensions

R. J. Mathar's comment and data corrected by G. C. Greubel, Feb 20 2017

A220853 Denominators of the fraction (30*n+7) * binomial(2*n,n)^2 * 2F1([1/2 - n/2, -n/2], [1], 64)/(-256)^n, where 2F1 is the hypergeometric function.

Original entry on oeis.org

1, 64, 16384, 1048576, 1073741824, 68719476736, 17592186044416, 1125899906842624, 4611686018427387904, 295147905179352825856, 75557863725914323419136, 4835703278458516698824704, 4951760157141521099596496896, 316912650057057350374175801344
Offset: 0

Views

Author

Keywords

Comments

From Alexander R. Povolotsky, Jan 25 2013: (Start)
Sum_{n>=0} A220852(n)/a(n) = 24/Pi.
In more direct way, Sum_{k>=0} ((30*k+7) * binomial(2*k,k)^2 * (2F1([1/2 - k/2, -k/2], [1], 64))/(-256)^k) = 24/Pi.
Another version of this identity is: Sum_{k>=0} ((30*k+7) * binomial(2*k,k)^2 * (Sum_{m=0..floor(k/2)} (binomial(k-m,m) * binomial(k,m) * 16^m))/(-256)^k) = 24/Pi. (End)

Crossrefs

Programs

  • Maple
    A220853 := proc(n)
        hypergeom([1/2-n/2,-n/2],[1], 64) ;
        simplify(%) ;
        (30*n+7)*binomial(2*n,n)^2*%/(-256)^n ;
        denom(%) ;
    end proc: # R. J. Mathar, Jan 09 2013
  • Mathematica
    Denominator[Table[(30*n + 7)*Binomial[2*n, n]^2*Hypergeometric2F1[(1 - n)/2, -n/2, 1,64]/(-256)^n,{n,0,50}]] (* G. C. Greubel, Feb 20 2017 *)

Formula

Conjectures from Alexander R. Povolotsky, Feb 27 2013: (Start)
a(n) = (A061549(n))^2.
a(n) = 4^A120738(n).
a(n) = 4^(log_2(16^n/((n/2) + (1/2) + (Sum_{k=0..n} (-(-1)^(binomial(n,k)))/2)))). (End)

Extensions

Wrong conjecture removed by R. J. Mathar, Jun 17 2016
Showing 1-2 of 2 results.