A132730 Row sums of triangle A132729.
1, 2, 3, 8, 21, 50, 111, 236, 489, 998, 2019, 4064, 8157, 16346, 32727, 65492, 131025, 262094, 524235, 1048520, 2097093, 4194242, 8388543, 16777148, 33554361, 67108790, 134217651, 268435376, 536870829
Offset: 0
Examples
a(4) = 21 = sum of row 4 terms of triangle A132729: (1 + 5 + 9 + 5 + 1). a(3) = 8 = (1, 3, 3, 1) dot (1, 1, 0, 4) = (1 + 3 + 0 + 4).
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-5,2).
Crossrefs
Cf. A132729.
Programs
-
Magma
[1] cat [2^(n+1) -3*n +1: n in [0..30]]; // G. C. Greubel, Feb 14 2021
-
Mathematica
LinearRecurrence[{4,-5,2},{1,2,3,8},30] (* Harvey P. Dale, Dec 30 2015 *) Table[2^(n+1) -3*n +1 -2*Boole[n==0], {n,0,30}] (* G. C. Greubel, Feb 14 2021 *)
-
Sage
[1]+[2^(n+1) -3*n +1 for n in (1..30)] # G. C. Greubel, Feb 14 2021
Formula
Binomial transform of [1, 1, 0, 4, 0, 4, 0, 4, ...].
a(n) = 2^(n+1) - 3*n + 1, for n > 0. - R. J. Mathar, Apr 04 2012
From G. C. Greubel, Feb 14 2021: (Start)
G.f.: (1 - 2*x + 4*x^3)/((1-x)^2 * (1-2*x)).
E.g.f.: -2 + (1-3*x)*exp(x) + 2*exp(2*x). (End)