cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A132734 Row sums of triangle A132733.

Original entry on oeis.org

1, 2, 5, 16, 43, 102, 225, 476, 983, 2002, 4045, 8136, 16323, 32702, 65465, 130996, 262063, 524202, 1048485, 2097056, 4194203, 8388502, 16777105, 33554316, 67108743, 134217602, 268435325, 536870776, 1073741683, 2147483502, 4294967145, 8589934436, 17179869023
Offset: 0

Views

Author

Gary W. Adamson, Aug 26 2007

Keywords

Examples

			a(3) = 16 = sum of row 3 terms of triangle A132733: (1 + 7 + 7 + 1).
a(3) = 16 = (1, 3, 3, 1) dot (1, 1, 2, 6) = (1 + 3 + 6 + 6).
		

Crossrefs

Cf. A132733.

Programs

  • Magma
    [1] cat [2^(n+2) -(5*n +1): n in [1..30]]; // G. C. Greubel, Feb 14 2021
  • Mathematica
    Table[2^(n+2) -(5*n+1) -2*Boole[n==0], {n,0,30}] (* G. C. Greubel, Feb 14 2021 *)
  • PARI
    a(n)={if(n==0, 1, 4*2^n - 5*n - 1)} \\ Andrew Howroyd, Sep 01 2018
    
  • PARI
    Vec((1 - 2*x + 2*x^2 + 4*x^3)/((1 - x)^2*(1 - 2*x)) + O(x^40)) \\ Andrew Howroyd, Sep 01 2018
    
  • Sage
    [1]+[2^(n+2) -(5*n +1) for n in (1..30)] # G. C. Greubel, Feb 14 2021
    

Formula

Binomial transform of [1, 1, 2, 6, 2, 6, 2, 6, ...].
From Andrew Howroyd, Sep 01 2018: (Start)
a(n) = 4*2^n - 5*n - 1 for n > 0.
a(n) = 4*a(n-1) - 5*a(n-2) + 2*a(n-3) for n > 3.
G.f.: (1 - 2*x + 2*x^2 + 4*x^3)/((1 - x)^2*(1 - 2*x)). (End)
E.g.f.: -2 - (1 + 5*x)*exp(x) + 4*exp(2*x). - G. C. Greubel, Feb 14 2021

Extensions

Terms a(10) and beyond from Andrew Howroyd, Sep 01 2018
Showing 1-1 of 1 results.