cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A132735 Triangle T(n,k) = binomial(n,k) + 1 with T(n,0) = T(n,n) = 1, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 4, 4, 1, 1, 5, 7, 5, 1, 1, 6, 11, 11, 6, 1, 1, 7, 16, 21, 16, 7, 1, 1, 8, 22, 36, 36, 22, 8, 1, 1, 9, 29, 57, 71, 57, 29, 9, 1, 1, 10, 37, 85, 127, 127, 85, 37, 10, 1, 1, 11, 46, 121, 211, 253, 211, 121, 46, 11, 1, 1, 12, 56, 166, 331, 463, 463, 331, 166, 56, 12, 1
Offset: 0

Views

Author

Gary W. Adamson, Aug 26 2007

Keywords

Examples

			First few rows of the triangle are:
  1;
  1, 1;
  1, 3,  1;
  1, 4,  4,  1;
  1, 5,  7,  5,  1;
  1, 6, 11, 11,  6, 1;
  1, 7, 16, 21, 16, 7, 1;
  ...
		

Crossrefs

Sequences of the form binomial(n, k) + q: A132823 (q=-2), A132044 (q=-1), A007318 (q=0), this sequence (q=1), A173740 (q=2), A173741 (q=4), A173742 (q=6).

Programs

  • Magma
    T:= func< n,k | k eq 0 or k eq n select 1 else Binomial(n,k) + 1 >;
    [T(n,k): k in [0..n], n in [0..12]]; // _G. C. Greubel, Feb 14 2021
  • Mathematica
    T[n_, k_]:= If[k==0||k==n, 1, Binomial[n,k] +1];
    Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 14 2021 *)
  • Sage
    def T(n, k): return 1 if (k==0 or k==n) else binomial(n, k) + 1
    flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 14 2021
    

Formula

T(n, k) = A007318(n,k) + 1 - A103451(n,k), an infinite lower triangular matrix.
T(n,0) = T(n,n) = 1; T(n,k) = C(n,k) + 1 otherwise. - Franklin T. Adams-Watters, Jul 06 2009
Sum_{k=0..n} T(n, k) = 2^n + n - 1 + [n=0] = A132736(n). - G. C. Greubel, Feb 14 2021

Extensions

Corrected and extended by Franklin T. Adams-Watters, Jul 06 2009