cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A132749 Triangle T(n,k) = binomial(n, k) with T(n, 0) = 2, read by rows.

Original entry on oeis.org

1, 2, 1, 2, 2, 1, 2, 3, 3, 1, 2, 4, 6, 4, 1, 2, 5, 10, 10, 5, 1, 2, 6, 15, 20, 15, 6, 1, 2, 7, 21, 35, 35, 21, 7, 1, 2, 8, 28, 56, 70, 56, 28, 8, 1, 2, 9, 36, 84, 126, 126, 84, 36, 9, 1, 2, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1, 2, 11, 55, 165, 330, 462, 462, 330, 165, 55, 11, 1
Offset: 0

Views

Author

Gary W. Adamson, Aug 28 2007

Keywords

Comments

Add 1 to all but the top entry in the left column of the Pascal matrix. - R. J. Mathar, Jan 18 2013

Examples

			First few rows of the triangle are:
  1;
  2, 1;
  2, 2,  1;
  2, 3,  3,  1;
  2, 4,  6,  4, 1;
  2, 5, 10, 10, 5, 1;
  ...
		

Crossrefs

Cf. A007318, A083318 (row sums), A103451.

Programs

  • Magma
    A132749:= func< n,k | k eq n select 1 else k eq 0 select 2 else Binomial(n,k) >;
    [A132749(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 16 2021
  • Mathematica
    T[n_, k_]:= If[k==n, 1, If[k==0, 2, Binomial[n, k]]];
    Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Feb 16 2021 *)
  • Sage
    def A132749(n,k): return 1 if k==n else 2 if k==0 else binomial(n,k)
    flatten([[A132749(n,k) for k in [0..n]] for n in [0..12]]) # G. C. Greubel, Feb 16 2021
    

Formula

T(n,k) = A103451(n,k) * A007318(n,k), an infinite lower triangular matrix.
From G. C. Greubel, Feb 16 2021: (Start)
T(n,k) = binomial(n, k) with T(n, 0) = 2 for n>0.
Sum_{k=0..n} T(n, k) = A083318(n) = 2^n + 1^n - 0^n. (End)

Extensions

More terms added by G. C. Greubel, Feb 16 2021