A132749 Triangle T(n,k) = binomial(n, k) with T(n, 0) = 2, read by rows.
1, 2, 1, 2, 2, 1, 2, 3, 3, 1, 2, 4, 6, 4, 1, 2, 5, 10, 10, 5, 1, 2, 6, 15, 20, 15, 6, 1, 2, 7, 21, 35, 35, 21, 7, 1, 2, 8, 28, 56, 70, 56, 28, 8, 1, 2, 9, 36, 84, 126, 126, 84, 36, 9, 1, 2, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1, 2, 11, 55, 165, 330, 462, 462, 330, 165, 55, 11, 1
Offset: 0
Examples
First few rows of the triangle are: 1; 2, 1; 2, 2, 1; 2, 3, 3, 1; 2, 4, 6, 4, 1; 2, 5, 10, 10, 5, 1; ...
Links
- G. C. Greubel, Rows n = 0..100 of the triangle, flattened
Programs
-
Magma
A132749:= func< n,k | k eq n select 1 else k eq 0 select 2 else Binomial(n,k) >; [A132749(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 16 2021
-
Mathematica
T[n_, k_]:= If[k==n, 1, If[k==0, 2, Binomial[n, k]]]; Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Feb 16 2021 *)
-
Sage
def A132749(n,k): return 1 if k==n else 2 if k==0 else binomial(n,k) flatten([[A132749(n,k) for k in [0..n]] for n in [0..12]]) # G. C. Greubel, Feb 16 2021
Formula
From G. C. Greubel, Feb 16 2021: (Start)
T(n,k) = binomial(n, k) with T(n, 0) = 2 for n>0.
Sum_{k=0..n} T(n, k) = A083318(n) = 2^n + 1^n - 0^n. (End)
Extensions
More terms added by G. C. Greubel, Feb 16 2021
Comments