cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A132789 Triangle read by rows: T(n,k) = A007318(n-1, k-1) + A001263(n, k) - 1.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 8, 8, 1, 1, 13, 25, 13, 1, 1, 19, 59, 59, 19, 1, 1, 26, 119, 194, 119, 26, 1, 1, 34, 216, 524, 524, 216, 34, 1, 1, 43, 363, 1231, 1833, 1231, 363, 43, 1, 1, 53, 575, 2603, 5417, 5417, 2603, 575, 53, 1, 1, 64, 869, 5069, 14069, 19655, 14069, 5069, 869
Offset: 1

Views

Author

Gary W. Adamson, Aug 30 2007

Keywords

Examples

			First few rows of the triangle are:
  1;
  1,  1;
  1,  4,   1;
  1,  8,   8,    1;
  1, 13,  25,   13,     1;
  1, 19,  59,   59,    19,     1;
  1, 26, 119,  194,   119,    26,     1;
  1, 34, 216,  524,   524,   216,    34,    1;
  1, 43, 363, 1231,  1833,  1231,   363,   43,   1;
  1, 53, 575, 2603,  5417,  5417,  2603,  575,  53,  1;
  1, 64, 869, 5069, 14069, 19655, 14069, 5069, 869, 64, 1;
  ...
		

Crossrefs

Column k=2 is A034856.
Row sums are A132790.

Programs

  • Mathematica
    << DiscreteMath`Combinatorica`
    t[n_, m_, 0] := Binomial[n, m];
    t[n_, m_, 1] := Binomial[n, m]*Binomial[n + 1, m]/(m + 1);
    t[n_, m_, 2] := Eulerian[1 + n, m];
    t[n_, m_, q_] := t[n, m, q] = t[n, m, q - 2] + t[n, m, q - 3] - 1;
    Table[Flatten[Table[Table[t[n, m, q], {m, 0, n}], {n, 0, 10}]], {q, 0, 10}]
  • PARI
    T(n,k)={if(k<=n, binomial(n-1, k-1)*(1 + binomial(n, k-1)/k) - 1, 0)}
    for(n=1, 10, for(k=1, n, print1(T(n, k), ", ")); print); \\ Andrew Howroyd, Sep 08 2018

Formula

Equals A007318 + A001263 - A000012 as infinite lower triangular matrices.
A symmetrical triangle recursion: let q=4; t(n,m,0)=Binomial[n,m]; t(n,m,1)=Narayana(n,m); t(n,m,2)=Eulerian(n+1,m); t(n,m,q)=t(n,m,g-2)+t(n,m,q-3).
T(n,k) = binomial(n-1, k-1)*(1 + binomial(n, k-1)/k) - 1. - Andrew Howroyd, Sep 08 2018

Extensions

More terms, Mma program and additional comments from Roger L. Bagula, Apr 20 2010
Edited by N. J. A. Sloane, Apr 21 2010 at the suggestion of R. J. Mathar
Name clarified by Andrew Howroyd, Sep 08 2018