cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A132791 Numbers k such that the sum of the digits of 4^k is prime.

Original entry on oeis.org

2, 4, 5, 6, 9, 10, 12, 14, 15, 17, 19, 20, 24, 26, 33, 34, 36, 46, 47, 48, 66, 73, 74, 79, 81, 82, 92, 98, 101, 103, 104, 106, 107, 110, 113, 118, 119, 126, 131, 132, 133, 136, 137, 143, 144, 145, 147, 151, 156, 158, 161, 164, 171, 181, 185, 192, 195, 198, 200, 204
Offset: 1

Views

Author

Jonathan Vos Post, Nov 17 2007

Keywords

Comments

This is the 4th row of a table which begins as follows.
A(j,k) = numbers k such that the sum of the digits of j^k is prime.
j | A(j,k)
--+-------------------------------------------------------
1 | none
3 | none (3 | sum of digits)
4 | 2, 4, 5, 6, 9, 10, 12, 14, 15, 17, ... (this sequence)
5 | 1, 2, 4, 5, 6, 7, 19, ...

Examples

			a(1) = 2 because digit sum(4^2) = digit sum(16) = 1+6 = 7.
a(2) = 4 because digit sum(4^4) = digit sum(256) = 13.
a(3) = 5 because digit sum(4^5) = digit sum(1024) = 7.
a(4) = 6 because digit sum(4^6) = digit sum(4096) = 19.
a(5) = 9 because digit sum(4^9) = digit sum(262144) = 19.
a(6) = 10 because digit sum(4^10) = digit sum(1048576) = 31.
a(7) = 12 because digit sum(4^12) = digit sum(16777216) = 37.
a(8) = 14 because digit sum(4^14) = digit sum(268435456) = 43.
a(9) = 15 because digit sum(4^15) = digit sum(1073741824) = 37.
a(10) = 17 because digit sum(4^17) = digit sum(17179869184) = 61.
		

Crossrefs

Programs

  • Maple
    sd:=proc(n) options operator, arrow: add(convert(n, base, 10)[j], j=1..nops(convert(n, base, 10))) end proc: a:=proc(n) if isprime(sd(4^n)) = true then n else end if end proc: seq(a(n),n=1..150); # Emeric Deutsch, Nov 24 2007
  • Mathematica
    Select[Range[500], PrimeQ[Plus @@ IntegerDigits[4^# ]] &] (* Stefan Steinerberger, Nov 20 2007 *)

Formula

Numbers k such that A007953(A000302(k)) is in A000040.

Extensions

More terms from Stefan Steinerberger and Emeric Deutsch, Nov 20 2007
Edited by Jon E. Schoenfield, May 11 2019