A132791 Numbers k such that the sum of the digits of 4^k is prime.
2, 4, 5, 6, 9, 10, 12, 14, 15, 17, 19, 20, 24, 26, 33, 34, 36, 46, 47, 48, 66, 73, 74, 79, 81, 82, 92, 98, 101, 103, 104, 106, 107, 110, 113, 118, 119, 126, 131, 132, 133, 136, 137, 143, 144, 145, 147, 151, 156, 158, 161, 164, 171, 181, 185, 192, 195, 198, 200, 204
Offset: 1
Examples
a(1) = 2 because digit sum(4^2) = digit sum(16) = 1+6 = 7. a(2) = 4 because digit sum(4^4) = digit sum(256) = 13. a(3) = 5 because digit sum(4^5) = digit sum(1024) = 7. a(4) = 6 because digit sum(4^6) = digit sum(4096) = 19. a(5) = 9 because digit sum(4^9) = digit sum(262144) = 19. a(6) = 10 because digit sum(4^10) = digit sum(1048576) = 31. a(7) = 12 because digit sum(4^12) = digit sum(16777216) = 37. a(8) = 14 because digit sum(4^14) = digit sum(268435456) = 43. a(9) = 15 because digit sum(4^15) = digit sum(1073741824) = 37. a(10) = 17 because digit sum(4^17) = digit sum(17179869184) = 61.
Programs
-
Maple
sd:=proc(n) options operator, arrow: add(convert(n, base, 10)[j], j=1..nops(convert(n, base, 10))) end proc: a:=proc(n) if isprime(sd(4^n)) = true then n else end if end proc: seq(a(n),n=1..150); # Emeric Deutsch, Nov 24 2007
-
Mathematica
Select[Range[500], PrimeQ[Plus @@ IntegerDigits[4^# ]] &] (* Stefan Steinerberger, Nov 20 2007 *)
Extensions
More terms from Stefan Steinerberger and Emeric Deutsch, Nov 20 2007
Edited by Jon E. Schoenfield, May 11 2019
Comments