A132822 Decimal expansion of Sum_{n >= 1} 1/7^prime(n).
0, 2, 3, 3, 8, 4, 3, 2, 8, 9, 6, 0, 3, 5, 3, 7, 3, 9, 9, 0, 9, 8, 5, 9, 8, 2, 2, 4, 9, 5, 9, 1, 2, 3, 7, 3, 4, 8, 9, 3, 4, 0, 9, 3, 5, 9, 3, 5, 9, 4, 4, 8, 6, 9, 6, 1, 9, 9, 8, 2, 8, 8, 4, 6, 5, 6, 5, 2, 3, 5, 6, 8, 2, 7, 5, 4, 6, 8, 0, 5, 1, 2, 1, 2, 1, 3, 6, 2, 1, 8, 6, 3, 1, 0, 7, 6, 2, 7
Offset: 0
Examples
0.023384328960353739909859822495912373489340935935944869619982884656523568...
Crossrefs
Programs
-
PARI
/* Sum of 1/m^p for primes p */ sumnp(n,m) = { local(s=0,a,j); for(x=1,n, s+=1./m^prime(x); ); a=Vec(Str(s)); for(j=3,n, print1(eval(a[j])",") ) }
-
PARI
suminf(n=1, 1/7^prime(n)) \\ Then: digits(%\.1^default(realprecision))[1..-3] to remove the last 2 digits. N.B.: Functions sumpos() and sumnum() yield much less accurate results. - M. F. Hasler, Jul 05 2017
Formula
From Amiram Eldar, Aug 11 2020: (Start)
Equals Sum_{k>=1} 1/A269327(k).
Equals 6 * Sum_{k>=1} pi(k)/7^(k+1), where pi(k) = A000720(k). (End)
Extensions
Offset corrected by R. J. Mathar, Feb 05 2009
Edited by M. F. Hasler, Jul 05 2017
Comments