cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A132817 Decimal expansion of Sum_{n >= 1} 1/6^prime(n).

Original entry on oeis.org

0, 3, 2, 5, 3, 9, 5, 8, 3, 3, 0, 8, 5, 2, 5, 5, 4, 4, 0, 4, 9, 2, 6, 0, 0, 5, 0, 7, 8, 1, 2, 7, 4, 1, 8, 1, 1, 9, 2, 9, 8, 6, 0, 7, 6, 6, 1, 7, 5, 7, 8, 0, 9, 8, 8, 8, 7, 6, 6, 4, 6, 1, 0, 0, 9, 9, 0, 7, 6, 7, 7, 3, 8, 3, 1, 3, 0, 3, 9, 1, 5, 1, 6, 3, 3, 8, 8, 0, 9, 3, 4, 8, 0, 6, 3, 5, 4, 1
Offset: 0

Views

Author

Cino Hilliard, Nov 17 2007

Keywords

Comments

Equivalently, the real number in (0,1) having the characteristic function of the primes, A010051, as its base-6 expansion. - M. F. Hasler, Jul 05 2017

Examples

			0.032539583308525544049260050781274181192986076617578098887664610099...
		

Crossrefs

Cf. A000720, A051006 (analog for base 2), A132800 (analog for base 3), A132806 (analog for base 4), A132797 (analog for base 5), A132822 (analog for base 7), A010051 (characteristic function of the primes), A000040 (the primes).

Programs

  • Mathematica
    Join[{0}, RealDigits[FromDigits[{{Table[If[PrimeQ[n], 1, 0], {n, 370}]}, 0}, 6], 10, 111][[1]]] (* Vincenzo Librandi, Jul 05 2017 *)
  • PARI
    /* Sum of 1/m^p for primes p */ sumnp(n,m) = { local(s=0,a,j); for(x=1,n, s+=1./m^prime(x); ); a=Vec(Str(s)); for(j=3,n, print1(eval(a[j])",") ) }
    
  • PARI
    suminf(n=1, 1/6^prime(n)) \\ Then: digits(%\.1^default(realprecision))[1..-3] to remove the last 2 digits. N.B.: Functions sumpos() and sumnum() yield much less accurate results. - M. F. Hasler, Jul 04 2017

Formula

Equals 5 * Sum_{k>=1} pi(k)/6^(k+1), where pi(k) = A000720(k). - Amiram Eldar, Aug 11 2020

Extensions

Offset corrected R. J. Mathar, Jan 26 2009
Edited by M. F. Hasler, Jul 05 2017

A132799 Decimal expansion of the convergent to the sum of (1/8)^p where p ranges over the set of prime numbers.

Original entry on oeis.org

0, 1, 7, 6, 0, 9, 1, 1, 9, 5, 3, 3, 5, 1, 7, 9, 6, 5, 3, 8, 5, 2, 7, 8, 4, 9, 7, 3, 5, 6, 6, 3, 1, 3, 4, 2, 6, 2, 3, 8, 1, 8, 1, 8, 0, 1, 0, 7, 9, 4, 9, 6, 9, 9, 4, 0, 6, 4, 8, 0, 1, 2, 6, 8, 4, 1, 2, 8, 7, 5, 4, 9, 4, 1, 2, 3, 2, 1, 4, 4, 4, 7, 2, 5, 7, 5, 7, 7, 3, 6, 2, 4, 6, 3, 2, 1, 9, 6
Offset: 0

Views

Author

Cino Hilliard, Nov 17 2007

Keywords

Examples

			0.01760911...
		

Crossrefs

Cf. A000720, A132822 (base 7), A132821 (base 9).

Programs

  • PARI
    /* Sum of 1/m^p for primes p */ sumnp(n,m) = { local(s=0,a,j); for(x=1,n, s+=1./m^prime(x); ); a=Vec(Str(s)); for(j=3,n, print1(eval(a[j])",") ) }

Formula

Equals 7 * Sum_{k>=1} pi(k)/8^(k+1), where pi(k) = A000720(k). - Amiram Eldar, Aug 11 2020

Extensions

Offset corrected R. J. Mathar, Jan 26 2009

A269327 a(n) = 7^prime(n).

Original entry on oeis.org

49, 343, 16807, 823543, 1977326743, 96889010407, 232630513987207, 11398895185373143, 27368747340080916343, 3219905755813179726837607, 157775382034845806615042743, 18562115921017574302453163671207, 44567640326363195900190045974568007
Offset: 1

Views

Author

Emre APARI, Feb 23 2016

Keywords

Examples

			The second prime is 3, hence a(2) = 7^3 = 343.
The third prime is 5, hence a(3) = 7^5 = 16807.
		

Crossrefs

Programs

Formula

a(n) = 7^A000040(n).
Sum_{n>=1} 1/a(n) = A132822. - Amiram Eldar, Aug 11 2020
Showing 1-3 of 3 results.