cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A132864 Expansion of 1/(1-4x*c(5x)), where c(x) is the g.f. of A000108.

Original entry on oeis.org

1, 4, 36, 424, 5716, 83544, 1288296, 20637264, 340116276, 5730014584, 98241641656, 1708602483504, 30070563388936, 534554579527024, 9584333758817616, 173120386421418144, 3147337611202622196, 57545643875054919864, 1057492201661230657176
Offset: 0

Views

Author

Philippe Deléham, Nov 18 2007

Keywords

Comments

Hankel transform is A135420. - Paul Barry, Sep 15 2009

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/(1-4*x*(1-Sqrt[1-20*x])/(10*x)), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 08 2014 *)
    Table[5^(n + 1) * CatalanNumber[n] * Hypergeometric2F1[1, n + 1/2, n + 2, -5/4]/4, {n, 0, 18}]  (* Vaclav Kotesovec, Jun 05 2021 *)

Formula

a(n) = Sum_{k=0..n} A039599(n,k)*(-1)^k*5^(n-k). - Philippe Deléham, Dec 11 2007
Integral representation: a(n) = (2/Pi)*Integral_{x=0..20} x^n*sqrt(x*(20-x))/(x*(16+x)). - Paul Barry, Sep 15 2009
From Gary W. Adamson, Jul 18 2011: (Start)
a(n) = upper left term in M^n, M = an infinite square production matrix as follows:
4, 4, 0, 0, 0, 0, ...
5, 5, 5, 0, 0, 0, ...
5, 5, 5, 5, 0, 0, ...
5, 5, 5, 5, 5, 0, ...
5, 5, 5, 5, 5, 5, ...
... (End)
Conjecture: n*a(n) + 2*(15-2*n)*a(n-1) + 160*(3-2*n)*a(n-2) = 0. - R. J. Mathar, Nov 15 2011
a(n) ~ 4^n * 5^(n+1) / (9 * n^(3/2) * sqrt(Pi)). - Vaclav Kotesovec, Feb 08 2014

Extensions

More terms added by Paul Barry, Sep 15 2009
More terms from Vincenzo Librandi, Feb 11 2014