A132889 Sum of the lengths of the longest increasing subsequence over all 321-avoiding permutations of [n].
1, 3, 11, 39, 144, 530, 1987, 7455, 28268, 107334, 410354, 1570954, 6042984, 23273172, 89948835, 348000975, 1350028020, 5241881150, 20396787070, 79426533758, 309829067496, 1209384071532, 4727454837846, 18490127530394
Offset: 1
Keywords
Examples
a(3)=11 because in the 321-avoiding permutations of 123, namely 123,132,312,213 and 231, the lengths of the longest increasing subsequences are 3,2,2,2 and 2, respectively.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- E. Deutsch, A. J. Hildebrand and H. S. Wilf, Longest increasing subsequences in pattern-restricted permutations, The Electronic Journal of Combinatorics, 9(2), 2003, #R12.
Crossrefs
Cf. A126217.
Programs
-
Maple
a:=proc(n) options operator, arrow: (sum(k*(2*k-n+1)^2*binomial(n+1, n-k)^2,k =floor((1/2)*n+1/2)..n))/(n+1)^2 end proc: seq(a(n),n=1..25);
-
Mathematica
Table[Sum[k*(2*k-n+1)^2*Binomial[n+1,n-k]^2, {k,Floor[(n+1)/2],n}]/(n+1)^2,{n,1,20}] (* Vaclav Kotesovec, Mar 20 2014 *)
-
PARI
for(n=1,25, print1(sum(k=floor((n+1)/2),n, k*(2*k-n+1)^2 * binomial(n+1,n-k)^2/(n+1)^2), ", ")) \\ G. C. Greubel, May 25 2017
Formula
a(n) = Sum_{k=floor((n+1)/2)..n} k*(2*k-n+1)^2*binomial(n+1,n-k)^2 / (n+1)^2.
a(n) = Sum_{k=1..n} k*A126217(n,k).
D-finite Recurrence: n^2*(n+1)*(4*n^3 - 13*n^2 - 3*n + 24)*a(n) = 2*n*(8*n^5 - 14*n^4 - 67*n^3 + 152*n^2 - 67*n + 12)*a(n-1) + 8*(8*n^6 - 66*n^5 + 156*n^4 + 6*n^3 - 461*n^2 + 543*n - 180)*a(n-2) - 32*(n-3)*(n-2)*(2*n - 5)*(4*n^3 - n^2 - 17*n + 12)*a(n-3). - Vaclav Kotesovec, Mar 20 2014
a(n) ~ 2^(2*n-1)/sqrt(Pi*n) * (1 + 2/sqrt(Pi*n)). - Vaclav Kotesovec, Mar 20 2014
Comments