cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A120730 Another version of Catalan triangle A009766.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 0, 2, 1, 0, 0, 2, 3, 1, 0, 0, 0, 5, 4, 1, 0, 0, 0, 5, 9, 5, 1, 0, 0, 0, 0, 14, 14, 6, 1, 0, 0, 0, 0, 14, 28, 20, 7, 1, 0, 0, 0, 0, 0, 42, 48, 27, 8, 1, 0, 0, 0, 0, 0, 42, 90, 75, 35, 9, 1, 0, 0, 0, 0, 0, 0, 132, 165, 110, 44, 10, 1
Offset: 0

Views

Author

Philippe Deléham, Aug 17 2006, corrected Sep 15 2006

Keywords

Comments

Triangle T(n,k), 0 <= k <= n, read by rows, given by [0, 1, -1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, ...] DELTA [1, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, -1, 1, ...] where DELTA is the operator defined in A084938.
Aerated version gives A165408. - Philippe Deléham, Sep 22 2009
T(n,k) is the number of length n left factors of Dyck paths having k up steps. Example: T(5,4)=4 because we have UDUUU, UUDUU, UUUDU, and UUUUD, where U=(1,1) and D=(1,-1). - Emeric Deutsch, Jun 19 2011
With zeros omitted: 1,1,1,1,2,1,2,3,1,5,4,1,... = A008313. - Philippe Deléham, Nov 02 2011

Examples

			As a triangle, this begins:
  1;
  0,  1;
  0,  1,  1;
  0,  0,  2,  1;
  0,  0,  2,  3,  1;
  0,  0,  0,  5,  4,  1;
  0,  0,  0,  5,  9,  5,  1;
  0,  0,  0,  0, 14, 14,  6,  1;
  ...
		

Crossrefs

Programs

  • Magma
    A120730:= func< n,k | n gt 2*k select 0 else Binomial(n, k)*(2*k-n+1)/(k+1) >;
    [A120730(n,k): k in [0..n], n in [0..13]]; // G. C. Greubel, Nov 07 2022
    
  • Maple
    G := 4*z/((2*z-1+sqrt(1-4*z^2*t))*(1+sqrt(1-4*z^2*t))): Gser := simplify(series(G, z = 0, 13)): for n from 0 to 12 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 0 to 12 do seq(coeff(P[n], t, k), k = 0 .. n) end do; # yields sequence in triangular form  # Emeric Deutsch, Jun 19 2011
    # second Maple program:
    b:= proc(x, y) option remember; `if`(y<0 or y>x, 0,
         `if`(x=0, 1, add(b(x-1, y+j), j=[-1, 1])))
        end:
    T:= (n, k)-> b(n, 2*k-n):
    seq(seq(T(n, k), k=0..n), n=0..14);  # Alois P. Heinz, Oct 13 2022
  • Mathematica
    b[x_, y_]:= b[x, y]= If[y<0 || y>x, 0, If[x==0, 1, Sum[b[x-1, y+j], {j, {-1, 1}}] ]];
    T[n_, k_] := b[n, 2 k - n];
    Table[Table[T[n, k], {k, 0, n}], {n, 0, 14}] // Flatten (* Jean-François Alcover, Oct 21 2022, after Alois P. Heinz *)
    T[n_, k_]:= If[n>2*k, 0, Binomial[n, k]*(2*k-n+1)/(k+1)];
    Table[T[n, k], {n,0,13}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 07 2022 *)
  • SageMath
    def A120730(n,k): return 0 if (n>2*k) else binomial(n, k)*(2*k-n+1)/(k+1)
    flatten([[A120730(n,k) for k in range(n+1)] for n in range(14)]) # G. C. Greubel, Nov 07 2022

Formula

G.f.: G(t,z) = 4*z/((2*z-1+sqrt(1-4*t*z^2))*(1+sqrt(1-4*t*z^2))). - Emeric Deutsch, Jun 19 2011
Sum_{k=0..n} x^k*T(n,n-k) = A001405(n), A126087(n), A128386(n), A121724(n), A128387(n), A132373(n), A132374(n), A132375(n), A121725(n) for x=1,2,3,4,5,6,7,8,9 respectively. [corrected by Philippe Deléham, Oct 16 2008]
T(2*n,n) = A000108(n); A000108: Catalan numbers.
From Philippe Deléham, Oct 18 2008: (Start)
Sum_{k=0..n} T(n,k)^2 = A000108(n) and Sum_{n>=k} T(n,k) = A000108(k+1).
Sum_{k=0..n} T(n,k)^3 = A003161(n).
Sum_{k=0..n} T(n,k)^4 = A129123(n). (End)
Sum_{k=0..n}, T(n,k)*x^k = A000007(n), A001405(n), A151281(n), A151162(n), A151254(n), A156195(n), A156361(n), A156362(n), A156566(n), A156577(n) for x=0,1,2,3,4,5,6,7,8,9 respectively. - Philippe Deléham, Feb 10 2009
From G. C. Greubel, Nov 07 2022: (Start)
T(n, k) = 0 if n > 2*k, otherwise binomial(n, k)*(2*k-n+1)/(k+1).
Sum_{k=0..n} (-1)^k*T(n,k) = A105523(n).
Sum_{k=0..n} (-1)^k*T(n,k)^2 = -A132889(n), n >= 1.
Sum_{k=0..floor(n/2)} T(n-k, k) = A357654(n).
T(n, n-1) = A001477(n).
T(n, n-2) = [n=2] + A000096(n-3), n >= 2.
T(n, n-3) = 2*[n<5] + A005586(n-5), n >= 3.
T(n, n-4) = 5*[n<7] - 2*[n=4] + A005587(n-7), n >= 4.
T(2*n+1, n+1) = A000108(n+1), n >= 0.
T(2*n-1, n+1) = A099376(n-1), n >= 1. (End)

A126217 Triangle read by rows: T(n,k) is the number of 321-avoiding permutations of {1,2,...,n} having longest increasing subsequence of length k (0<=k<=n).

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 0, 4, 1, 0, 0, 4, 9, 1, 0, 0, 0, 25, 16, 1, 0, 0, 0, 25, 81, 25, 1, 0, 0, 0, 0, 196, 196, 36, 1, 0, 0, 0, 0, 196, 784, 400, 49, 1, 0, 0, 0, 0, 0, 1764, 2304, 729, 64, 1, 0, 0, 0, 0, 0, 1764, 8100, 5625, 1225, 81, 1, 0, 0, 0, 0, 0, 0, 17424, 27225, 12100, 1936, 100, 1, 0, 0, 0, 0, 0, 0, 17424, 88209, 75625, 23716, 2916, 121, 1
Offset: 0

Views

Author

Emeric Deutsch, Dec 22 2006

Keywords

Comments

The row sums are the Catalan numbers (A000108). T(2n,n) = (C(n))^2 = A001246(n), where the C(n) are the Catalan numbers.
Also T(n,k) = Number of Dyck paths of semilength n with midpoint height = 2*k - n. David Scambler, Nov 25 2010

Examples

			T(4,2) = 4 because we have 2143, 3142, 2413 and 3412.
Triangle starts:
  1;
  0, 1;
  0, 1, 1;
  0, 0, 4,  1;
  0, 0, 4,  9,  1;
  0, 0, 0, 25, 16,  1;
  0, 0, 0, 25, 81, 25, 1;
  ...
T(4,2) = 4 because 2*2 - 4 = zero and Dyck 4-paths with midpoint height of zero are UUDDUUDD, UUDDUDUD, UDUDUUDD and UDUDUDUD.
		

Crossrefs

T(n+1,n) gives A000290.

Programs

  • Maple
    T:=proc(n,k) if floor((n+1)/2)<=k and k<=n then ((2*k-n+1)*binomial(n+1,k+1)/(n+1))^2 else 0 fi end: for n from 0 to 13 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
  • Mathematica
    t[n_, k_] := If[n<=2k, ((2k-n+1)*Binomial[n+1, n-k]/(n+1))^2, 0]; Table[t[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Amiram Eldar, Nov 26 2018 *)
  • PARI
    T(n,k)=if(n<=2*k,(2*k-n+1)*binomial(n+1,n-k)\(n+1))^2  \\ M. F. Hasler, Nov 24 2010

Formula

T(n,k) = ((2*k - n + 1)*C(n+1,n-k)/(n + 1))^2 if floor((n+1)/2) <= k <= n; T(n,k) = 0 otherwise. [N.B.: floor((n+1)/2) <= k <=> n/2 <= k.]
Sum_{k=n+1..2*n+1} (-1)^(n+k+1) * T(2*n+1,k) = binomial(2*n+1,n) = A001700(n). - Peter Bala, Nov 03 2024
From Alois P. Heinz, Nov 04 2024: (Start)
Sum_{k=0..n} k * T(n,k) = A132889(n).
2 * Sum_{k=0..2n} (2n-k) * T(2n,k) = A071799(n) for n>=1. (End)

Extensions

Row and column 0 inserted by Alois P. Heinz, Nov 04 2024
Showing 1-2 of 2 results.