cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A132889 Sum of the lengths of the longest increasing subsequence over all 321-avoiding permutations of [n].

Original entry on oeis.org

1, 3, 11, 39, 144, 530, 1987, 7455, 28268, 107334, 410354, 1570954, 6042984, 23273172, 89948835, 348000975, 1350028020, 5241881150, 20396787070, 79426533758, 309829067496, 1209384071532, 4727454837846, 18490127530394
Offset: 1

Views

Author

Emeric Deutsch, Sep 07 2007

Keywords

Comments

Apparently: Summed over all Dyck (n+1)-paths, the number of ascents of length 1 to the right of the midpoint (ordinate x=n+1). - David Scambler, Aug 08 2012

Examples

			a(3)=11 because in the 321-avoiding permutations of 123, namely 123,132,312,213 and 231, the lengths of the longest increasing subsequences are 3,2,2,2 and 2, respectively.
		

Crossrefs

Cf. A126217.

Programs

  • Maple
    a:=proc(n) options operator, arrow: (sum(k*(2*k-n+1)^2*binomial(n+1, n-k)^2,k =floor((1/2)*n+1/2)..n))/(n+1)^2 end proc: seq(a(n),n=1..25);
  • Mathematica
    Table[Sum[k*(2*k-n+1)^2*Binomial[n+1,n-k]^2, {k,Floor[(n+1)/2],n}]/(n+1)^2,{n,1,20}] (* Vaclav Kotesovec, Mar 20 2014 *)
  • PARI
    for(n=1,25, print1(sum(k=floor((n+1)/2),n, k*(2*k-n+1)^2 * binomial(n+1,n-k)^2/(n+1)^2), ", ")) \\ G. C. Greubel, May 25 2017

Formula

a(n) = Sum_{k=floor((n+1)/2)..n} k*(2*k-n+1)^2*binomial(n+1,n-k)^2 / (n+1)^2.
a(n) = Sum_{k=1..n} k*A126217(n,k).
D-finite Recurrence: n^2*(n+1)*(4*n^3 - 13*n^2 - 3*n + 24)*a(n) = 2*n*(8*n^5 - 14*n^4 - 67*n^3 + 152*n^2 - 67*n + 12)*a(n-1) + 8*(8*n^6 - 66*n^5 + 156*n^4 + 6*n^3 - 461*n^2 + 543*n - 180)*a(n-2) - 32*(n-3)*(n-2)*(2*n - 5)*(4*n^3 - n^2 - 17*n + 12)*a(n-3). - Vaclav Kotesovec, Mar 20 2014
a(n) ~ 2^(2*n-1)/sqrt(Pi*n) * (1 + 2/sqrt(Pi*n)). - Vaclav Kotesovec, Mar 20 2014

A116364 Row squared sums of Catalan triangle A033184.

Original entry on oeis.org

1, 2, 9, 60, 490, 4534, 45689, 489920, 5508000, 64276492, 773029466, 9531003552, 119990158054, 1537695160070, 20009930706137, 263883333450760, 3521003563829212, 47470845904561648, 645960472314074400
Offset: 0

Views

Author

Paul D. Hanna, Feb 04 2006

Keywords

Comments

Number of 321-avoiding permutations in which the length of the longest increasing subsequence is n. Example: a(2)=9 because we have 12, 132, 312, 213, 231, 3142, 3412, 2143 and 2413. Column sums of triangle in A126217 (n >= 1). - Emeric Deutsch, Sep 07 2007

Examples

			The dot product of Catalan row 4 with itself equals
  a(4) = [14,14,9,4,1]*[14,14,9,4,1] = 490
which is equivalent to obtaining the final term in these repeated partial sums of Catalan row 4:
  14,   14,    9,    4,    1
     28,   37,   41,   42
        65,  106,  148
          171,  319
             490
		

Crossrefs

Programs

  • GAP
    List([0..30], n-> Sum([0..n], j-> (Binomial(2*n-j+1, n-j)* (j+1)/(2*n-j+1))^2 )); # G. C. Greubel, May 12 2019
  • Magma
    [(&+[(Binomial(2*n-j+1, n-j)*(j+1)/(2*n-j+1))^2: j in [0..n]]): n in [0..30]]; // G. C. Greubel, May 12 2019
    
  • Maple
    a:=proc(k) options operator, arrow: sum((2*k-n+1)^2*binomial(n+1,k+1)^2/(n+1)^2,n=k..2*k) end proc: 1,seq(a(k),k=1..17); # Emeric Deutsch, Sep 07 2007
  • Mathematica
    Table[Sum[(Binomial[2*n-j+1, n-j]*(j+1)/(2*n-j+1))^2, {j, 0, n}], {n, 0, 30}] (* G. C. Greubel, May 12 2019 *)
  • PARI
    a(n)=sum(k=0,n,((k+1)*binomial(2*n-k+1,n-k)/(2*n-k+1))^2)
    
  • Sage
    [sum(( binomial(2*n-j+1, n-j)*(j+1)/(2*n-j+1) )^2 for j in (0..n)) for n in (0..30)] # G. C. Greubel, May 12 2019
    

Formula

a(n) = Sum_{k=0..n} (C(2*n-k+1,n-k)*(k+1)/(2*n-k+1))^2.
Showing 1-2 of 2 results.