A132891 Sum of the heights of all left factors of Dyck paths of length n.
1, 3, 6, 14, 28, 61, 121, 257, 508, 1065, 2103, 4372, 8634, 17842, 35254, 72524, 143396, 293968, 581630, 1189102, 2354168, 4802331, 9512984, 19370764, 38391332, 78056544, 154773135, 314281350, 623427154, 1264546021, 2509378855, 5085153822, 10094528146
Offset: 1
Keywords
Examples
a(4)=14 because the six left factors of Dyck paths of length 4 are UDUD, UDUU, UUDD, UUDU, UUUD and UUUU, having heights 1, 2, 2, 2, 3 and 4, respectively.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..700
- Toufik Mansour and Gokhan Yilidirim, Longest increasing subsequences in involutions avoiding patterns of length three, Turkish Journal of Mathematics (2019), Section 2.2.
Crossrefs
Cf. A132890.
Programs
-
Maple
v := ((1-sqrt(1-4*z^2))*1/2)/z: g := proc (k) options operator, arrow: v^k*(1+v)*(1+v^2)/((1+v^(k+1))*(1+v^(k+2))) end proc: T := proc (n, k) options operator, arrow; coeff(series(g(k), z = 0, 70), z, n) end proc: seq(add(k*T(n, k), k = 1 .. n), n = 1 .. 30);
-
Mathematica
b[x_, y_, k_] := b[x, y, k] = If[x == 0, z^k, If[y > 0, b[x - 2, y - 1, k], 0] + b[x - 2, y + 1, Max[y + 1, k]]]; T[n_] := Table[Coefficient[b[2n, 0, 0], z, i], {i, 1, n}]; a[n_] := T[n].Range[n]; Array[a, 33] (* Jean-François Alcover, Nov 10 2020, after Alois P. Heinz in A132890 *)
Formula
a(n) = Sum_{k=1..n} k * A132890(n,k).
Comments