cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A132891 Sum of the heights of all left factors of Dyck paths of length n.

Original entry on oeis.org

1, 3, 6, 14, 28, 61, 121, 257, 508, 1065, 2103, 4372, 8634, 17842, 35254, 72524, 143396, 293968, 581630, 1189102, 2354168, 4802331, 9512984, 19370764, 38391332, 78056544, 154773135, 314281350, 623427154, 1264546021, 2509378855, 5085153822, 10094528146
Offset: 1

Views

Author

Emeric Deutsch, Sep 08 2007

Keywords

Comments

See A132890 for the statistic "height" on left factors of Dyck paths.

Examples

			a(4)=14 because the six left factors of Dyck paths of length 4 are UDUD, UDUU, UUDD, UUDU, UUUD and UUUU, having heights 1, 2, 2, 2, 3 and 4, respectively.
		

Crossrefs

Cf. A132890.

Programs

  • Maple
    v := ((1-sqrt(1-4*z^2))*1/2)/z: g := proc (k) options operator, arrow: v^k*(1+v)*(1+v^2)/((1+v^(k+1))*(1+v^(k+2))) end proc: T := proc (n, k) options operator, arrow; coeff(series(g(k), z = 0, 70), z, n) end proc: seq(add(k*T(n, k), k = 1 .. n), n = 1 .. 30);
  • Mathematica
    b[x_, y_, k_] := b[x, y, k] = If[x == 0, z^k, If[y > 0, b[x - 2, y - 1, k], 0] + b[x - 2, y + 1, Max[y + 1, k]]];
    T[n_] := Table[Coefficient[b[2n, 0, 0], z, i], {i, 1, n}];
    a[n_] := T[n].Range[n];
    Array[a, 33] (* Jean-François Alcover, Nov 10 2020, after Alois P. Heinz in A132890 *)

Formula

a(n) = Sum_{k=1..n} k * A132890(n,k).