A132895 Even numbers for which all divisors, with the exception of 1 and 2, are isolated. A positive divisor, k, of n is isolated if neither (k-1) nor (k+1) divides n.
2, 4, 8, 10, 14, 16, 22, 26, 28, 32, 34, 38, 44, 46, 50, 52, 58, 62, 64, 68, 70, 74, 76, 82, 86, 88, 92, 94, 98, 104, 106, 116, 118, 122, 124, 128, 130, 134, 136, 142, 146, 148, 152, 154, 158, 164, 166, 170, 172, 176, 178, 184, 188, 190, 194, 196, 202, 206, 208, 212
Offset: 1
Keywords
Examples
28 is a term of the sequence because its divisors are 1, 2, 4, 7, 14, 28 and only 1 and 2 are non-isolated. 30 does not belong to the sequence because its divisors are 1, 2, 3, 4, 6, 8, 12, 24 and 1, 2, 3, 4 are non-isolated.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Maple
with(numtheory): b:=proc(n) local div,ISO,i: div:=divisors(n): ISO:={}: for i to tau(n) do if member(div[i]-1,div)=false and member(div[i]+1,div)=false then ISO:=`union`(ISO,{div[i]}) end if end do end proc: a:=proc(n) if nops(b(n))= tau(n)-2 then n else end if end proc: seq(a(n), n=4..200);
-
Mathematica
Select[2*Range[120],Min[Differences[Rest[Divisors[#]]]]>1&] (* Harvey P. Dale, Jul 13 2022 *)
-
PARI
isok(k) = if(k%2, 0, if(!(k%3), 0, fordiv(k, d, if(d > 1 && !(k % (d+1)), return(0))); 1)); \\ Amiram Eldar, Apr 20 2025
-
Python
from itertools import count, islice from sympy import divisors from sympy.ntheory.primetest import is_square def A132895_gen(startvalue=2): # generator of terms >= startvalue return filter(lambda n:all(d==1 or not is_square((d<<3)+1) for d in divisors(n>>1,generator=True)), count(max(startvalue+(startvalue&1),2),2)) A132895_list = list(islice(A132895_gen(),40)) # Chai Wah Wu, Jun 07 2025
Formula
a(n) = 2*A112886(n). - Ray Chandler, May 29 2008
Extensions
Corrected and extended by Ray Chandler, May 29 2008
Comments