A132898 Triangle read by rows: T(n,k) = (-1)^(n-1)*n + (-1)^(k-1)*k - 1, 1 <= k <= n.
1, -2, -5, 3, 0, 5, -4, -7, -2, -9, 5, 2, 7, 0, 9, -6, -9, -4, -11, -2, -13, 7, 4, 9, 2, 11, 0, 13, -8, -11, -6, -13, -4, -15, -2, -17, 9, 6, 11, 4, 13, 2, 15, 0, 17, -10, -13, -8, -15, -6, -17, -4, -19, -2, -21, 11, 8, 13, 6, 15, 4, 17, 2, 19, 0, 21
Offset: 1
Examples
First few rows of the triangle: 1; -2, -5; 3, 0, 5; -4, -7, -2, -9; 5, 2, 7, 0, 9; -6, -9, -4, -11, -2, -13; 7, 4, 9, 2, 11, 0, 13; -8, -11, -6, -13, -4, -15, -2, -17; 9, 6, 11, 4, 13, 2, 15, 0, 7; ... T(5,3) = 7 = S(5) + S(3) = 5 + 3 - 1.
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275 (first 50 rows)
Programs
-
PARI
T(n,k) = if(k<=n, (-1)^(n-1)*n + (-1)^(k-1)*k - 1, 0); \\ Andrew Howroyd, Sep 01 2018
Extensions
Name clarified and terms a(56) and beyond from Andrew Howroyd, Sep 01 2018
Comments