cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A132899 Row sums of triangle A132898.

Original entry on oeis.org

1, -7, 8, -22, 23, -45, 46, -76, 77, -115, 116, -162, 163, -217, 218, -280, 281, -351, 352, -430, 431, -517, 518, -612, 613, -715, 716, -826, 827, -945, 946, -1072, 1073, -1207, 1208, -1350, 1351, -1501, 1502, -1660, 1661, -1827, 1828, -2002, 2003, -2185, 2186
Offset: 1

Views

Author

Gary W. Adamson, Sep 03 2007

Keywords

Examples

			a(4) = 22 = sum of row 4 terms of triangle A132898: (-4, -7, -2, -9).
a(4) = 22 = n*S(n) - n + SUM_{1,n}:S(n) = 4*(-4) - 4 + (1, -2, 3, -4) = -16 - 4 - 2.
		

Crossrefs

Cf. A132898.

Programs

  • Mathematica
    LinearRecurrence[{-1, 2, 2, -1, -1},{1, -7, 8, -22, 23}, 50] (* Stefano Spezia, Sep 01 2018 *)
  • PARI
    a(n)={(-1)^(n-1)*(n^2 + ceil(n/2)) - n} \\ Andrew Howroyd, Aug 28 2018
    
  • PARI
    Vec((1 - 6*x - x^2 - 2*x^3)/((1 - x)^2*(1 + x)^3) + O(x^50)) \\ Andrew Howroyd, Aug 28 2018

Formula

a(n) = n*S(n) - n + Sum_{k=1..n} S(k) where S(n) = (-1)^(n-1)*n.
From Andrew Howroyd, Aug 28 2018: (Start)
a(n) = (-1)^(n-1)*(n^2 + ceiling(n/2)) - n.
a(n) = -a(n-1) + 2*a(n-2) + 2*a(n-3) - a(n-4) - a(n-5) for n > 5.
G.f.: x*(1 - 6*x - x^2 - 2*x^3)/((1 - x)^2*(1 + x)^3).
(End)

Extensions

Terms a(11) and beyond from Andrew Howroyd, Aug 28 2018
Showing 1-1 of 1 results.