A132955 Smallest prime in a sequence of n consecutive primes which add to a perfect square.
17, 13, 5, 181, 587, 13, 163, 2, 13789, 1013, 163, 653, 11, 3931, 397, 2039, 439, 4447, 1217, 269, 1733, 3, 5, 2239, 197, 3, 1061, 14563, 1901, 3, 149, 359, 2137, 67, 433, 11, 907, 2339, 673, 19181, 11593, 89, 6883, 3, 28571, 997, 43, 3559, 2287, 1931, 911
Offset: 2
Examples
a(2)=17, because it is the smallest prime in a sequence of n=2 consecutive primes, which add to a perfect square, namely 17+19=36=6^2. The sums of earlier pairs, 2+3, 3+5, 5+7, 7+11 etc. fail to produces sums which are any perfect square.
Links
- Zak Seidov, Table of n, a(n) for n = 2..1000
Programs
-
Mathematica
Module[{prs=Prime[Range[3200]]},Table[First[SelectFirst[Partition[ prs, n,1],IntegerQ[ Sqrt[Total[#]]]&]],{n,2,52}]] (* The program uses the SelectFirst function from Mathematica version 10 *) (* Harvey P. Dale, Sep 06 2015 *)
-
PARI
a(n) = {ip = 1; while (! issquare(sum(i=ip, ip+n-1, prime(i))), ip++); prime(ip);} \\ Michel Marcus, Jun 08 2014
Formula
a(n)={ min prime(k): [ sum(j=k..k+n-1) prime(j)] in A000290}. - R. J. Mathar, Nov 27 2007
Extensions
Edited by R. J. Mathar, Nov 27 2007
Comments