cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A132975 Expansion of q * psi(-q^9) / psi(-q) in powers of q where psi() is a Ramanujan theta function.

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 5, 7, 10, 12, 15, 20, 26, 32, 39, 50, 63, 76, 92, 114, 140, 168, 201, 244, 295, 350, 415, 496, 591, 696, 818, 967, 1140, 1332, 1554, 1820, 2126, 2468, 2861, 3324, 3855, 4448, 5126, 5916, 6816, 7824, 8970, 10292, 11793, 13471, 15372, 17548
Offset: 1

Views

Author

Michael Somos, Sep 07 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = q + q^2 + q^3 + 2*q^4 + 3*q^5 + 4*q^6 + 5*q^7 + 7*q^8 + 10*q^9 + ...
		

Crossrefs

Cf. A128129, A128640, A132302, A132972, A132976. Essentially the same as A213267.

Programs

  • Mathematica
    nmax=60; CoefficientList[Series[Product[(1+x^k) * (1-x^(9*k)) * (1+x^(18*k)) / (1-x^(4*k)),{k,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Oct 13 2015 *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, Pi/4, q^(9/2)] / EllipticTheta[ 2, Pi/4, q^(1/2)], {q, 0, n}]; (* Michael Somos, Oct 31 2015 *)
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^9 + A) * eta(x^36 + A) / (eta(x + A) * eta(x^4 + A) * eta(x^18 + A)), n))};

Formula

Expansion of eta(q^2) * eta(q^9) * eta(q^36) / (eta(q) * eta(q^4) * eta(q^18)) in powers of q.
Euler transform of period 36 sequence [ 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = u1 * u2 - (1 + u1 + u2) * (u3 + u6 + 3 * u3 * u6).
G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = (1/3) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A132976.
G.f.: x * Product_{k>0} P(3,x^k) * P(9,x^k) * P(12,x^k) * P(36,x^k) where P(n,x) is the n-th cyclotomic polynomial.
3 * a(n) = A132972(n) unless n=0. a(2*n) = A128129(n). a(2*n + 1) = A132302(n). a(3*n) = A128640(n). Convolution inverse of A132976.
a(n) ~ exp(2*Pi*sqrt(n)/3) / (6 * sqrt(3) * n^(3/4)). - Vaclav Kotesovec, Oct 13 2015