A132985 Expansion of chi(-q^5) / chi(-q)^5 in powers of q where chi() is a Ramanujan theta function.
1, 5, 15, 40, 95, 205, 420, 820, 1535, 2785, 4915, 8460, 14260, 23590, 38360, 61440, 97055, 151370, 233355, 355900, 537395, 803960, 1192380, 1754140, 2560980, 3712205, 5344570, 7645600, 10871080, 15368350, 21607220, 30220360, 42056415, 58249680, 80310510
Offset: 0
Keywords
Examples
G.f. = 1 + 5*q + 15*q^2 + 40*q^3 + 95*q^4 + 205*q^5 + 420*q^6 + 820*q^7 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Crossrefs
Cf. A132980.
Programs
-
Mathematica
nmax = 40; CoefficientList[Series[Product[(1 + x^k)^5 / (1 + x^(5*k)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 07 2015 *) a[ n_] := SeriesCoefficient[ QPochhammer[ q^5, q^10] / QPochhammer[ q, q^2]^5, {q, 0, n}]; (* Michael Somos, Oct 31 2015 *)
-
PARI
{a(n) = my(A); if( n<0, 0, A = x*O(x^n); polcoeff( ( eta(x^5 + A) / eta(x^10 + A) ) / ( eta(x + A) / eta(x^2 + A) )^5, n))};
Formula
Expansion of (eta(q^5) / eta(q^10)) / (eta(q) / eta(q^2))^5 in powers of q.
Euler transform of period 10 sequence [ 5, 0, 5, 0, 4, 0, 5, 0, 5, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = u^2 + v + u * v * (2 - 4 * v).
G.f. A(x) satisfies 0 = f(A(x), A(x^3)) where f(u, v) = (u - v)^4 - u * v * (1 + 3 * u - 4 * u^2) * (1 + 3 * v - 4 * v^2).
G.f. is a period 1 Fourier series which satisfies f(-1 / (10 t)) = (1/4) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A132980.
G.f.: Product_{k>0} (1 + x^k)^5 / (1 + x^(5*k)).
a(n) ~ exp(2*Pi*sqrt(2*n/5)) / (2^(11/4) * 5^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 07 2015
Extensions
Typo in a(32) corrected by G. C. Greubel, Sep 28 2017
Comments