cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A132985 Expansion of chi(-q^5) / chi(-q)^5 in powers of q where chi() is a Ramanujan theta function.

Original entry on oeis.org

1, 5, 15, 40, 95, 205, 420, 820, 1535, 2785, 4915, 8460, 14260, 23590, 38360, 61440, 97055, 151370, 233355, 355900, 537395, 803960, 1192380, 1754140, 2560980, 3712205, 5344570, 7645600, 10871080, 15368350, 21607220, 30220360, 42056415, 58249680, 80310510
Offset: 0

Views

Author

Michael Somos, Sep 07 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 5*q + 15*q^2 + 40*q^3 + 95*q^4 + 205*q^5 + 420*q^6 + 820*q^7 + ...
		

Crossrefs

Cf. A132980.

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[(1 + x^k)^5 / (1 + x^(5*k)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 07 2015 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ q^5, q^10] / QPochhammer[ q, q^2]^5, {q, 0, n}]; (* Michael Somos, Oct 31 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x*O(x^n); polcoeff( ( eta(x^5 + A) / eta(x^10 + A) ) / ( eta(x + A) / eta(x^2 + A) )^5, n))};

Formula

Expansion of (eta(q^5) / eta(q^10)) / (eta(q) / eta(q^2))^5 in powers of q.
Euler transform of period 10 sequence [ 5, 0, 5, 0, 4, 0, 5, 0, 5, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = u^2 + v + u * v * (2 - 4 * v).
G.f. A(x) satisfies 0 = f(A(x), A(x^3)) where f(u, v) = (u - v)^4 - u * v * (1 + 3 * u - 4 * u^2) * (1 + 3 * v - 4 * v^2).
G.f. is a period 1 Fourier series which satisfies f(-1 / (10 t)) = (1/4) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A132980.
G.f.: Product_{k>0} (1 + x^k)^5 / (1 + x^(5*k)).
a(n) ~ exp(2*Pi*sqrt(2*n/5)) / (2^(11/4) * 5^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 07 2015

Extensions

Typo in a(32) corrected by G. C. Greubel, Sep 28 2017